首页> 外文OA文献 >The Impact of Colonizer Plants on Bacterial Community Structure and Function in Early Successional Soils of a Glacial Forefield
【2h】

The Impact of Colonizer Plants on Bacterial Community Structure and Function in Early Successional Soils of a Glacial Forefield

机译:殖民地植物对冰川前场早期演替土壤中细菌群落结构和功能的影响

摘要

Through litter inputs, root exudates, and the resulting changes in soil chemistry, plants directly interact with the soil microbial community. Recent research on plant-microbe interactions suggests that soil microbial community structure and function play an integral role in plant community succession through both positive and negative feedbacks; yet, plant-microbe dynamics along a successional gradient have not been well-studied. My study in the recently exposed soils of the Mendenhall Glacier forefield near Juneau, AK, USA examined the development of microbial communities in coordination with the establishment of the first plants. The Mendenhall Glacier features a perhumid climate, with moist soils throughout the year, and nearby vegetation that serves as a propagule source, facilitating relatively rapid plant colonization. I sampled soils under two different plant species (alder, Alnus sinuata and spruce, Picea sitchensis) and from unvegetated areas. All samples were gathered within a single transect of soils that had been exposed for 6 years. For each sample site soil pH, organic carbon (C), available nitrogen (N), bioavailable (Olsen) Phosphorus (P), microbial biomass C, and nitrogen fixation rates were determined. My research shows specific vegetation type differences in bacterial community structure and the general enrichment of α-Proteobacteria in vegetated soils. Soil nutrient and carbon pools did not correlate with bacterial community composition. Interestingly, although pH did not significantly vary by vegetation type, it was the only parameter that correlated with bacterial community structure. My study revealed a significant correlation between nitrogen fixation rates and bacterial community composition, a feedback with potentially important impacts for the ecology of these environments. Vegetation type explained more variation in differences in bacterial communities than pH, suggesting that plant acidification of soils only partly drive broad shifts in bacterial communities. Plant species-specific differences in bacterial community structure may also relate to the chemical composition of litter and root exudates. Additionally, plant carbon inputs in general likely enhance asymbiotic N-fixer function in these relatively new soils where nitrogen limitations may stifle bacterial growth. My study provides insights into how colonizer plants drive changes in bacterial community structure and function in a glacial forefield, altering bacterial succession and ecosystem development.
机译:通过凋落物的输入,根系分泌物以及由此引起的土壤化学变化,植物直接与土壤微生物群落相互作用。关于植物-微生物相互作用的最新研究表明,土壤微生物群落结构和功能通过正反馈和负反馈在植物群落演替中起着不可或缺的作用。然而,尚未对沿连续梯度的植物微生物动力学进行深入研究。我在美国阿肯色州朱诺附近的门登霍尔冰川前场最近暴露的土壤中进行的研究与第一批植物的建立相协调,研究了微生物群落的发展。门登霍尔冰川(Mendenhall Glacier)具有全湿气候,全年土壤潮湿,附近的植被作为繁殖源,促进了较快的植物定植。我在两种不同植物物种(al木,Al木和云杉,云杉云杉)下以及无植被地区采样了土壤。所有样品均收集在暴露了6年的单一土壤样带中。对于每个样本站点,测定土壤的pH值,有机碳(C),有效氮(N),生物有效性(Olsen)磷(P),微生物生物量C和固氮率。我的研究表明细菌群落结构中特定的植被类型差异以及植被土壤中α-变形杆菌的总体富集。土壤养分和碳库与细菌群落组成无关。有趣的是,尽管pH值并未随植被类型而显着变化,但这是与细菌群落结构相关的唯一参数。我的研究表明固氮率与细菌群落组成之间存在显着相关性,这种反馈可能会对这些环境的生态产生重要影响。植被类型解释了细菌群落差异的变化多于pH,这表明土壤的植物酸化仅部分驱动细菌群落的广泛变化。细菌群落结构中植物物种特异性的差异也可能与凋落物和根系分泌物的化学组成有关。另外,在这些相对较新的土壤中,氮的限制可能会抑制细菌的生长,一般而言,植物的碳输入可能会增强非共生N固定剂的功能。我的研究提供了有关移殖植物如何驱动冰川前场中细菌群落结构和功能的变化,改变细菌演替和生态系统发育的见解。

著录项

  • 作者

    Knelman Joseph E.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号