首页> 外文OA文献 >Investigating Interactions of the PKCα C1B Domain with Lipid Bilayers and Activators: An EPR Site-Directed Spin-Labeling and Relaxation Study
【2h】

Investigating Interactions of the PKCα C1B Domain with Lipid Bilayers and Activators: An EPR Site-Directed Spin-Labeling and Relaxation Study

机译:调查的PKCαC1B域与脂质双层和激活剂的相互作用:一项EPR定点旋转标记和松弛研究

摘要

It has been previously shown that activation of PKCα on the leading edge membrane of a polarized chemotaxing cell contributes to a positive feedback loop that sustains leading edge formation and facilitates eukaryotic cell movement. As a result of its vital role in this process and other known signaling pathways, PKCα has been studied to better understand both normal cell function and the various diseases in which PKCα is an important player, including cancer. A recent single molecule study on PKCα has shown that, once bound to the membrane bilayer, the PKCα C1B domain plays a critical role in the final step of kinase activation on the target membrane. Specifically, C1B is recruited to the membrane by its binding to the activating lipid diacylglycerol (DAG) to activate the kinase. However, the key interactions of C1B with the lipid bilayer and its known lipid activators including DAG and phorbol esters are still under investigation. In this study, EPR site-directed spin labeling and power saturation measurements were employed to determine membrane insertion depth values for the PKCα C1B domain on simple lipid bilayers containing PC and PS in the presence and absence of known lipid activators DAG and PMA (the latter a phorbol ester). These depth values were then compared to protein-to-membrane depth values previously obtained through molecular dynamic (MD) simulations of the C1B domain by others, and to diffusion rates previously measured for C1B bound to the same lipid mixtures by others. All three approaches yielded a common trend in binding depths for C1B, indicating that C1B adopts a shallow docking depth when bound to PMA and a deeper docking depth when in a membrane-bound, activator-free state or bound to DAG on the lipid membrane bilayer. The present EPR-determined membrane depths provide the most direct measure of this shallower docking geometry on PMA-containing membranes. The shallow geometry may well play an important role in the higher affinity of C1B for PMA compared to DAG, where additional membrane penetration may have an energetic cost. The higher affinity for PMA superactivates PKCα and plays a central role in well established ability of phorbol esters to promote tumor formation.
机译:先前已经表明,极化趋化细胞前缘膜上PKCα的激活有助于形成正反馈环,该环维持前缘形成并促进真核细胞运动。由于其在此过程中的重要作用和其他已知的信号传导途径,已对PKCα进行了研究,以更好地了解正常细胞功能以及其中PKCα是重要因素的各种疾病,包括癌症。最近对PKCα的单分子研究表明,一旦结合到膜双层上,PKCαC1B结构域在靶膜上激酶活化的最终步骤中起关键作用。具体而言,C1B通过与活化脂质二酰基甘油(DAG)结合来活化膜,从而激活激酶。但是,C1B与脂质双层及其已知的脂质活化剂(包括DAG和佛波酯)的关键相互作用仍在研究中。在这项研究中,在存在和不存在已知脂质活化剂DAG和PMA的情况下,采用EPR定点自旋标记和功率饱和度测量来确定包含PC和PS的简单脂质双层上PKCαC1B结构域的膜插入深度值佛波酯)。然后,将这些深度值与其他人先前通过C1B域的分子动力学(MD)模拟获得的蛋白质-膜深度值进行比较,并与其他人先前针对与相同脂质混合物结合的C1B测得的扩散率进行比较。所有这三种方法都产生了C1B结合深度的共同趋势,表明C1B在与PMA结合时采用较浅的对接深度,而在膜结合,无活化剂的状态或结合至脂质膜双层上的DAG时采用较深的对接深度。 。当前EPR确定的膜深可最直接地测量含PMA的膜上较浅的对接几何形状。与DAG相比,浅几何结构可能在C1B对PMA的更高亲和力中起重要作用,在DAG中,额外的膜渗透可能会带来高昂的成本。对PMA的较高亲和力使PKCα超活化,并在佛波酯促进肿瘤形成的能力中发挥了重要作用。

著录项

  • 作者

    Miller Iain M.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号