首页> 外文OA文献 >Orbit Estimation of Geosynchronous Objects Via Ground-Based and Space-Based Optical Tracking
【2h】

Orbit Estimation of Geosynchronous Objects Via Ground-Based and Space-Based Optical Tracking

机译:通过地基和空基光学跟踪的地球同步物体的轨道估计

摘要

Angles-only orbit estimation of geosynchronous objects is a unique challenge due to the dense population of clustered geosynchronous objects, the singularities of and perturbations to geosynchronous motion, and the error inherent to experimental observations of geosynchronous objects. Passive optical tracking of geosynchronous space objects has traditionally been performed by ground-based sensors, and the capability has advanced significantly through the introduction of space-based angles-only tracking. This research addresses three key facets of geosynchronous orbit estimation accuracy: improvement to the accuracy via appropriate coordinate modeling, empirical characterization of achievable ground-based angles-only estimation accuracy, and analytic modeling of the space-based angles-only estimated uncertainty. This research develops and analyzes improvements to geosynchronous orbit estimation based on high-fidelity dynamic modeling with a specialized set of coordinates designed specifically to address the geosynchronous orbit conditions. The use of an appropriate representation, the GEO elements, enhances the orbit estimation accuracy compared to the more traditional inertial Cartesian state space representation of geosynchronous motion. Simulation and experimental studies demonstrate that GEO element estimation better recovers the in-track motion than inertial position and velocity state estimation. The short-term estimation accuracy given ground-based tracking is characterized empirically using the Wide Area Augmentation System satellite reference ephemerides. The results show that 10 meter accuracy is possible given short sampling intervals (10 to 30 seconds) and long nightly track lengths (3 or more hours). Several tracking scenarios are found to meet accuracy requirements on the order of 100 meters. The observability of relative states using space-based angles-only tracking of geosynchronous objects by a geosynchronous sensor is analyzed, and first-order analytic expressions for the predicted uncertainty of the along-track separation and intersatellite range are developed assuming space-based passive tracking. The uncertainty models are validated via Monte Carlo analysis. The results demonstrate that 1 hour of continuous space-based passive tracking can estimate the range to the order of tens of meters, and 12 hours produces range uncertainty on the order of meters. The outcome of this research is a set of methods to improve the performance of geosynchronous orbit estimation, and an enhanced understanding of the accuracy possibilities of angles-only ground-based and space-based geosynchronous orbit estimation.
机译:由于聚集的地球同步物体的密集,地球同步运动的奇异性和微扰以及地球同步物体的实验观测所固有的误差,地球同步物体的仅角度轨道估计是一个独特的挑战。传统上,地面同步传感器对地球同步空间物体进行无源光学跟踪,并且通过引入基于空间的仅角度跟踪,该功能已大大提高。这项研究解决了地球同步轨道估计精度的三个关键方面:通过适当的坐标建模提高精度,对仅基于地面的角度可实现的估计精度进行经验表征,以及对基于空间的角度仅进行估计的不确定性的解析模型。这项研究开发和分析了基于高保真动态建模的地球同步轨道估计的改进,该模型具有专门设计用于解决地球同步轨道条件的一组专用坐标。与更传统的地球同步运动的惯性笛卡尔状态空间表示相比,使用适当的表示形式GEO元素可以提高轨道估计的准确性。仿真和实验研究表明,与惯性位置和速度状态估计相比,GEO元素估计能够更好地恢复轨道内运动。使用广域增强系统卫星参考星历表,根据经验对基于地面跟踪的短期估算精度进行了表征。结果表明,在较短的采样间隔(10至30秒)和较长的夜间轨道长度(3个或更长时间)下,可以达到10米的精度。发现一些跟踪方案可以满足100米左右的精度要求。分析了地球同步传感器利用空基对地球同步物体进行空基角度跟踪的相对状态的可观测性,并假设了空基被动跟踪,开发了沿轨道间隔和星际距离的不确定性的一阶解析表达式。通过蒙特卡洛分析验证了不确定性模型。结果表明,连续进行1小时的天基被动跟踪可以估计到几十米的范围,而12小时会产生几米的范围不确定性。这项研究的结果是一套改进地球同步轨道估算性能的方法,以及对仅角度的地面和空间地球同步轨道估算的准确性可能性的进一步理解。

著录项

  • 作者

    Tombasco Jill;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号