首页> 外文OA文献 >Nanoindentation of Bio- and Geo-mineralized Composites: Contribution of Microstructure and Composition
【2h】

Nanoindentation of Bio- and Geo-mineralized Composites: Contribution of Microstructure and Composition

机译:生物矿化复合材料的纳米压痕:微观结构和组成的贡献。

摘要

Bio-mineralized composite tissues, such as bone and teeth, are heterogeneous in both mineral composition and crystallinity. These tissues are altered throughout life by aging, wear, microfracture, and various disease states (e.g., osteoporosis), and are then further altered geologically after death by fossilization to create geo-mineralized tissues. Bone and enamel exhibit a wide range of mechanical responses at nanometer-length scales, where large-scale porosity and macro-structural variation are not factors. Some variability seen in mineralized tissues can be attributed to the amount of mineral; where a general increase in mechanical properties occurs with increasing mineral volume fraction. However, a large range of modulus values for bone is observed at a constant mineral content indicating that both the composition and microstructure play a vital role in the nanomechanical response. This dissertation is aimed at understanding the nanomechanical properties of these heterogeneous mineralized composites in order to elucidate the interplay between composition, microstructure, and tissue mechanical behavior.A combined approach using nanoindentation testing and complimentary techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, and quantitative backscattered electron microscopy (qBSE) are used to investigate the effect of variations in crystallography, microstructure, and mineral composition on the nanomechanical properties of these materials. Further, development of novel qBSE glass standards allow for site-matched measurement of mineral volume fraction and nanomechanical properties. Additionally, a finite element analysis (FEA) allows for isolation of individual parameters and their contribution to the nanomechanical properties. The relative contribution of the composition and microstructure are explored through two experimental model systems of bone fossilization and lemur enamel.In fossilization, or diagenesis, composition is altered over geologic time as minerals are incorporated into pore spaces within the bone. Fossilized bone samples demonstrate a larger range of mineral composition, mineral volume fraction, and crystallinity than is found in modern samples. Nanoindentation revealed that anisotropy of modern bone can be preserved in fossil bones going back at least to the early Eocene (approximately 50 million years). Further, both increased crystallinity and density correlated with increased modulus values, suggesting that size of bioapatite crystals contribute to the mechanical properties. Nanoindentation is useful in investigating tissue-level diagenesis in bone, and can provide insight into the functional significance of mineralized tissues even after diagenesis has occurred.Variations in microstructure and mineralization were examined in the enamel of three lemur species Lemur catta, Lepilemur leucopus, Propithecus verreauxi, and Homo sapiens. Nanoindentation revealed a natural gradation of mechanical properties where a 2-12% increase in modulus and hardness correlated to increased mineral content (p u3c 0.001) measured by qBSE. Enamel microcracking in Lemur catta resulted in a 49% reduction in nanomechcanical properties at the occlusal (or chewing) surface of the tooth. FEA modeling demonstrated a similar decrease in modulus values for indentation within 20 microns of a crack. Variations in enamel microstructure and microcracking in lemur species enables study of the interplay between tissue microstructure and nanomechanical properties, and further explores variations with diet.The investigation of nanomechanical property dependence on microstructure and mineral composition in two experimental model systems combined with FEA is used to understand the fundamental mechanical behavior of biological heterogeneous composite materials. Understanding the interplay between material structure and function in biomineralized composites will help to elucidate the relative contributions of various factors to nanomechanical behavior and will ultimately lead to improved development of biomimetic materials.
机译:生物矿化的复合组织,例如骨骼和牙齿,在矿物质组成和结晶度方面都是异质的。这些组织在整个生命中都会因衰老,磨损,微破裂和各种疾病状态(例如骨质疏松症)而发生改变,然后在死亡后通过化石进一步地质改变以形成矿化的组织。骨和搪瓷在纳米级尺度上表现出广泛的机械响应,而大型孔隙率和宏观结构变化不是因素。在矿化组织中观察到的某些变异性可以归因于矿物质的数量。随着矿物质体积分数的增加,机械性能普遍提高。然而,在恒定的矿物质含量下观察到大范围的骨骼模量值,表明组成和微观结构在纳米力学响应中都起着至关重要的作用。本文旨在了解这些非均质矿化复合材料的纳米力学性能,以阐明组成,微观结构和组织力学行为之间的相互作用。结合使用纳米压痕测试和互补技术(例如X射线衍射,傅里叶变换红外)的组合方法光谱学和定量背散射电子显微镜(qBSE)用于研究晶体学,微观结构和矿物组成的变化对这些材料的纳米机械性能的影响。此外,新型qBSE玻璃标准的开发允许对矿物质的体积分数和纳米机械性能进行现场匹配的测量。此外,有限元分析(FEA)允许隔离各个参数及其对纳米机械性能的影响。通过骨骼化石和狐猴搪瓷的两个实验模型系统探索了成分和微观结构的相对贡献。在化石或成岩作用中,随着矿物进入骨骼内的孔隙空间,成分随地质时间而改变。与现代样品相比,僵化的骨样品显示出更大范围的矿物成分,矿物体积分数和结晶度。纳米压痕表明,现代骨骼的各向异性可以保留在至少追溯到始新世(约5000万年)的化石骨骼中。此外,增加的结晶度和密度都与增加的模量值相关,表明生物磷灰石晶体的尺寸有助于机械性能。纳米压痕技术可用于研究骨骼中组织水平的成岩作用,甚至可以在成岩发生后提供矿化组织的功能意义的信息。对三种狐猴物种的狐猴的牙釉质,Lepilemur leucopus,Propithecus的牙釉质进行了微观结构和矿化变化的研究。 verreauxi和Homo sapiens。纳米压痕揭示了机械性能的自然渐变,其中通过qBSE测得的模量和硬度增加2-12%与增加的矿物质含量相关(p <0.001)。狐猴的牙釉质微裂纹导致牙齿的咬合(或咀嚼)表面纳米机械性能降低49%。 FEA建模证明了裂纹20微米内压痕模量值的相似下降。狐猴物种牙釉质微结构和微裂纹的变化能够研究组织微结构与纳米机械性能之间的相互作用,并进一步探索饮食的变化。在两个实验模型系统中,结合有限元分析,研究了纳米机械性能对微结构和矿物质成分的依赖性。了解生物异质复合材料的基本力学行为。了解生物矿化复合材料中材料结构与功能之间的相互作用将有助于阐明各种因素对纳米机械行为的相对贡献,并最终导致仿生材料的开发得到改善。

著录项

  • 作者

    Campbell Sara E.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号