首页> 外文OA文献 >Snow Depth Estimation, Structure, Prediction, and Hydrologic Modeling at the Kilometer Scale in the Colorado Rocky Mountains
【2h】

Snow Depth Estimation, Structure, Prediction, and Hydrologic Modeling at the Kilometer Scale in the Colorado Rocky Mountains

机译:科罗拉多洛矶山脉千米尺度的雪深估计,结构,预测和水文模拟

摘要

Research focuses on observing and predicting spatial distribution of snow depth at the kilometer scale. Observation of spatial snow depth distribution is considered by its estimation from random, sparse observations and important factors affecting this estimation. Predicting spatial distribution of both snow depth and melt rates begins from simple hypothesis wherein the spatial distribution of snow depth is structured by the spatial distribution of controlling variables. Predictions made by this structured view are evaluated in spatial modeling of peak-accumulation snow depth and applied to spatial distribution of a point-scale, temperature-index model of snowmelt runoff using minimal parameter complexity. High-resolution light detection and ranging (LiDAR) measurements provide a rich backdrop for understanding estimation from sparse observations and developing our structured view of snow distribution. The data are used to illuminate the effects of sample size on estimation skill, the uncertainty in estimation due to random sampling, the effect of model resolution on estimation skill, and the difference between cross-validated skill and skill based on the entire distribution. None of these topics have previously been explored in the literature. The effect of predictor quality is also investigated. LiDAR derived predictors are compared to readily available predictors downloaded from the internet. Hierarchical cluster analysis is used to decompose spatial non-stationarity of snow depth and results match qualitative understanding of the spatial distribution of physical controls. The same methodology is then used to decompose spatial non-stationarity of physical controls and infer patterns of snow depth distribution independent of observations. Even when using readily-available predictors, predicted patterns require at least 100-200 observations to be matched by standard estimation methods. Predicted patterns are then applied to formulate a parameterized spatial distribution of a 1-dimensional, temperature-index model to account for heterogeneity of both snow accumulation and melt. Our new method introduces fewer or comparable parameters as the current subgrid distribution, the areal depletion curve. Given highly uncertain parameter selection in practical application, we demonstrate that our more physically intuitive method virtually always results in significant improvement in simulated streamflow timing when compared to the depletion curve method.
机译:研究重点是在公里尺度上观测和预测积雪深度的空间分布。空间降雪深度分布的观测是通过对随机稀疏观测的估计以及影响该估计的重要因素来进行考虑的。预测雪深和融化率的空间分布都来自简单的假设,其中雪深的空间分布由控制变量的空间分布构成。在峰积雪深度的空间模型中评估此结构化视图所做的预测,并使用最小的参数复杂度将其应用于点积,融雪径流温度指数模型的空间分布。高分辨率光检测和测距(LiDAR)测量为了解稀疏观测的估计以及开发雪分布的结构化视图提供了丰富的背景。数据用于阐明样本量对估计技能的影响,由于随机采样导致的估计不确定性,模型分辨率对估计技能的影响以及交叉验证的技能和基于整个分布的技能之间的差异。这些主题以前都没有在文献中探讨过。还研究了预测器质量的影响。将LiDAR衍生的预测变量与从Internet下载的随时可用的预测变量进行比较。层次聚类分析用于分解积雪深度的空间非平稳性,其结果与对物理控制空间分布的定性理解相匹配。然后使用相同的方法分解物理控件的空间非平稳性,并推论独立于观测值的雪深分布模式。即使使用容易获得的预测变量,预测模式也需要至少100-200个观察值才能通过标准估计方法进行匹配。然后将预测的模式应用于公式化一维温度指数模型的参数化空间分布,以解决积雪和融雪的异质性。我们的新方法引入了更少或类似的参数作为当前的子网格分布,面积损耗曲线。考虑到实际应用中参数选择的高度不确定性,我们证明,与耗竭曲线法相比,我们更直观的物理方法实际上总能显着改善模拟水流的时机。

著录项

  • 作者

    McCreight James Lucian;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号