首页> 外文OA文献 >Spectroscopic and Spectroelectrochemical Characterization of Fundamental Interfacial Charge Transfer Processes Relevant to Efficient Solar Energy Conversion
【2h】

Spectroscopic and Spectroelectrochemical Characterization of Fundamental Interfacial Charge Transfer Processes Relevant to Efficient Solar Energy Conversion

机译:与高效太阳能转化有关的基本界面电荷转移过程的光谱学和光谱电化学表征

摘要

Solar energy conversion is accomplished by multilayered devices consisting of various conducting and semiconducting materials. Because the layers are only 10s - 100s of nm thick, device behavior is governed primarily by interfacial molecular dynamics that often differ from the bulk behavior of these materials. The thermodynamics and kinetics of the interfacial interactions are particularly interesting, as interfacial electron transfer strongly influence the efficiency of photovoltaics and devices used in solar hydrogen production. This work focuses specifically on interfacial charge transfer processes occurring at three interfaces relevant to thin film organic/inorganic solar energy conversion devices. i) A potential-step polymer electrochemical deposition and doping procedure was developed and used to create poly(3-hexylthiophene) (e-P3HT) interlayer films for organic photovoltaics. Photoelectron spectroscopies suggest that an interface dipole forms spontaneously at the polymer donor/fullerene acceptor interface through partial interfacial charge transfer prior to photoexcitation; this doping-dependent interfacial dipole was correlated to the electrical properties of these critical heterojunctions. ii) Potential-modulated fluorescence spectroscopy (PMF) was developed and used examine the kinetics of the reversible oxidation of the (e-P3HT) films in attempt to elucidate the ITO/e-P3HT charge transfer rates. However, the optical switching increased linearly as the polymer film decreased, indicating that the molecular-level process probed by PMF was rate-limited by counter-ion movement into and out of the polymer film. iii) Potential-modulated attenuated total reflectance spectroscopy (PM-ATR) was used to examine the reversible reduction of CdSe semiconductor nanocrystals tethered to indium tin oxide electrodes as well as the surface-coverage dependent bleaching of these nanocrystals. A new equivalent circuit model describing the CdSe/ITO electrode is proposed, and a PM-ATR simulation program was used to quantify Faradiac resistances to interfacial charge transfer that trend with the magnitude of overpotential. The insights gained through these experiments add to a growing understanding of the fundamental, molecular-level competition between photoinduced charge generation and parasitic charge recombination at these critical interfaces.
机译:太阳能转换是通过由各种导电和半导体材料组成的多层设备完成的。因为这些层只有10s-100s nm厚,所以器件行为主要由界面分子动力学决定,这些动力学常常不同于这些材料的整体行为。界面相互作用的热力学和动力学特别令人感兴趣,因为界面电子转移会强烈影响用于太阳能制氢的光伏电池和器件的效率。这项工作专门针对发生在与薄膜有机/无机太阳能转换装置相关的三个界面上的界面电荷转移过程。 i)开发了一种潜在步骤的聚合物电化学沉积和掺杂程序,并将其用于创建用于有机光伏的聚(3-己基噻吩)(e-P3HT)中间膜。光电子能谱表明,在光激发之前,通过部分界面电荷转移,界面偶极在聚合物供体/富勒烯受体界面处自发形成。这种依赖于掺杂的界面偶极子与这些关键异质结的电学特性相关。 ii)开发了电势调制荧光光谱(PMF)并用于检查(e-P3HT)膜可逆氧化的动力学,以试图阐明ITO / e-P3HT的电荷转移速率。但是,随着聚合物膜的减少,光学开关线性增加,这表明由PMF探测的分子级过程受到反离子进入聚合物膜和从聚合物膜中移出的速率限制。 iii)使用电位调制的衰减全反射光谱(PM-ATR)来检查拴在铟锡氧化物电极上的CdSe半导体纳米晶体的可逆还原性以及这些纳米晶体的表面覆盖率依赖性漂白。提出了一种描述CdSe / ITO电极的等效电路模型,并使用PM-ATR仿真程序来量化Faradiac对界面电荷转移的电阻,该电阻随过电势的大小而变化。通过这些实验获得的见识使人们对在这些关键界面处的光诱导电荷产生和寄生电荷重组之间的基本分子水平竞争有了越来越多的了解。

著录项

  • 作者

    Jenkins Judith Lynn;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号