首页> 外文期刊>Advanced Materials >Engineering Interfacial Photo-Induced Charge Transfer Based on Nanobamboo Array Architecture for Efficient Solar-to-Chemical Energy Conversion
【24h】

Engineering Interfacial Photo-Induced Charge Transfer Based on Nanobamboo Array Architecture for Efficient Solar-to-Chemical Energy Conversion

机译:基于纳米竹阵列架构的工程界面光致电荷转移,实现高效的太阳能转化为化学能

获取原文
获取原文并翻译 | 示例
       

摘要

Manipulating and tuning the charge carrier transport in photoactive materials has attracted much attention in the fields of photovoltaics and photocatalysis, since it plays an important role in enhancing the photoconversion efficiency. For example, based on photo-induced charge transfer (PICT) dynamics, heterogeneous interfaces within composite photocat-alysts can effectively assist in the interfacial charge separation and hinder the charge recombination to promote the photocata-lytic efficiency. However, assembling various components with inappropriate arrangements would lead to serious recombination losses, as unsuitable interfacial energy band structure would form undesired energy barriers at the heterojunction and impede the charge transportation. Realizing controllable arrangement of various heterojunctions, such as type I heterojunction, Ohmic junction, and Schottkey junction, in 1D heterocomposite nanostructures might circumvent these drawbacks. Specifically, designable energy band structure and tunable heterogeneous interfaces along the axial direction of 1D architectures will be advantageous for efficient transportation of majority carriers. Furthermore, the nanoscale size in the radial direction of 1D architectures can effectively shorten the transfer distance of minority carriers to semiconductor/ electrolyte interface, as shown in the inset of Scheme 1. As a result, the charge recombination would be effectively suppressed and high efficient photoconversion could be expected. In addition, a promising architecture should possess the capability of modulating unique physical and chemical properties of different components to obtain an optimal synergistic performance.
机译:操纵和调整光敏材料中的载流子传输在光伏和光催化领域引起了广泛的关注,因为它在提高光转换效率中起着重要的作用。例如,基于光致电荷转移(PICT)动力学,复合光催化剂中的异质界面可以有效地帮助界面电荷分离,并阻碍电荷复合,从而提高光催化效率。然而,由于不适当的界面能带结构将在异质结处形成不希望的能垒并阻碍电荷传输,因此以不合适的布置组装各种部件将导致严重的重组损失。在一维异质复合纳米结构中实现各种异质结(例如I型异质结,欧姆结和肖特基结)的可控排列可能会避免这些缺点。具体地,沿着一维架构的轴向方向的可设计的能带结构和可调谐的异构界面对于多数载流子的有效运输将是有利的。此外,如方案1的插图所示,在一维结构的径向方向上的纳米级尺寸可以有效地缩短少数载流子向半导体/电解质界面的转移距离。结果,可以有效地抑制电荷复合并且高效可以进行光转换。此外,有前途的体系结构应具有调节不同组件独特的物理和化学特性以获得最佳协同性能的能力。

著录项

  • 来源
    《Advanced Materials》 |2015年第13期|2207-2214|共8页
  • 作者单位

    School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore;

    School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore;

    School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore;

    School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, Singapore 637371, Singapore;

    School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, Singapore 637371, Singapore;

    School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore;

    School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号