首页> 外文OA文献 >Characterizing and Modeling Transient Behavior in Power Electronic Circuits with Wide Bandgap Semiconductors and in Maximum Power Point Tracking for Photovoltaic Systems
【2h】

Characterizing and Modeling Transient Behavior in Power Electronic Circuits with Wide Bandgap Semiconductors and in Maximum Power Point Tracking for Photovoltaic Systems

机译:带有宽带隙半导体的电力电子电路和光伏系统的最大功率点跟踪中的瞬态行为表征和建模

摘要

This dissertation examines the transient characteristics in next generation power electronic circuits at both the device-level and the systems-level. At the device-level, the effect of the parasitic capacitances on the switching performance of emerging wide bandgap semiconductors (WBG) is evaluated. Equivalent device models based on gallium nitride (GaN) and silicon carbide (SiC) are implemented in SaberRD and MATLAB, and transient switching characteristics are analyzed in great detail. The effects of the parasitic capacitances on detrimental circuit behavior such as “overshoot,” “ringing,” and “false turn-on” are investigated. The modeled results are supplemented and validated with experimental characterization of the devices in various power conversion circuits. The models can be used to aid in the design of next generation WBG devices so that the undesirable transient effects displayed by contemporary versions of these devices can be mitigated. udAt the systems-level, the transient overshoot demonstrated by conventional maximum power point tracking algorithms for photovoltaic power conversion systems is investigated. An adaptive controller is implemented so that the operating point can converge to the optimal power point rapidly with minimal overshoot. This new controller overcomes the parasitic components inherent to the power converter which limit its ability to deliver maximum power rapidly. It will be shown that with the new controller, the maximum power point is attainable in 4 milliseconds. udThe work accomplished in this dissertation lays a foundation for power electronic engineers to integrate semiconductor device theory with control theory to optimize the performance of next generation power conversion systems.
机译:本文在设备级和系统级都研究了下一代电力电子电路的瞬态特性。在器件级别,评估了寄生电容对新兴宽带隙半导体(WBG)开关性能的影响。在SaberRD和MATLAB中实现了基于氮化镓(GaN)和碳化硅(SiC)的等效器件模型,并详细分析了瞬态开关特性。研究了寄生电容对有害电路行为(如“过冲”,“振铃”和“误导通”)的影响。通过各种功率转换电路中器件的实验特性对建模结果进行补充和验证。该模型可用于辅助设计下一代WBG设备,从而可以减轻这些设备的现代版本所显示的不良瞬态效应。在系统级,研究了用于光伏电源转换系统的常规最大功率点跟踪算法所演示的瞬态过冲。实现了自适应控制器,以使工作点能够以最小的过冲迅速收敛到最佳功率点。这种新型控制器克服了功率转换器固有的寄生组件,这些寄生组件限制了其快速提供最大功率的能力。将显示出,使用新的控制器,可以在4毫秒内达到最大功率点。 ud本论文完成的工作为电力电子工程师将半导体器件理论与控制理论相结合以优化下一代功率转换系统的性能奠定了基础。

著录项

  • 作者

    Khanna Raghav;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-31 15:10:05

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号