首页> 外文OA文献 >Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems
【2h】

Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems

机译:HZETRN 2010作为航空电子系统单事件效果鉴定工具的研究

摘要

NASA's future missions are focused on deep space for human exploration that do not provide a simple emergency return to Earth. In addition, the deep space environment contains a constant background Galactic Cosmic Ray (GCR) radiation exposure, as well as periodic Solar Particle Events (SPEs) that can produce intense amounts of radiation in a short amount of time. Given these conditions, it is important that the avionics systems for deep space human missions are not susceptible to Single Event Effects (SEE) that can occur from radiation interactions with electronic components. The typical process to minimizing SEE effects is through using heritage hardware and extensive testing programs that are very costly. Previous work by Koontz, et al. [1] utilized an analysis-based method for investigating electronic component susceptibility. In their paper, FLUKA, a Monte Carlo transport code, was used to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data. In addition, CREME-96, a deterministic code, was also compared with FLUKA and in-flight data. However, FLUKA has a long run-time (on the order of days), and CREME-96 has not been updated in several years. This paper will investigate the use of HZETRN 2010, a deterministic transport code developed at NASA Langley Research Center, as another tool that can be used to analyze SEE and SEU rates. The benefits to using HZETRN over FLUKA and CREME-96 are that it has a very fast run time (on the order of minutes) and has been shown to be of similar accuracy as other deterministic and Monte Carlo codes when considering dose [2, 3, 4]. The 2010 version of HZETRN has updated its treatment of secondary neutrons and thus has improved its accuracy over previous versions. In this paper, the Linear Energy Transfer (LET) spectra are of interest rather than the total ionizing dose. Therefore, the LET spectra output from HZETRN 2010 will be compared with the FLUKA and in-flight data to validate HZETRN 2010 as a computational tool for SEE qualification by analysis. Furthermore, extrapolation of these data to interplanetary environments at 1 AU will be investigated to determine whether HZETRN 2010 can be used successfully and confidently for deep space mission analyses.
机译:NASA的未来任务集中在人类探索的深空,这些空间无法提供简单的紧急返回地球的方法。此外,深空环境还包含恒定的背景银河宇宙射线(GCR)辐射以及周期性的太阳粒子事件(SPE),这些事件可以在短时间内产生大量辐射。在这些条件下,很重要的一点是,用于深空人类飞行任务的航空电子系统不应受到单事件效应(SEE)的影响,后者可能会由于与电子元件的辐射相互作用而发生。最小化SEE效果的典型过程是使用传统硬件和昂贵的大量测试程序。 Koontz等人的先前工作。 [1]利用一种基于分析的方法研究电子元件的磁化率。在他们的论文中,使用了蒙特卡罗运输代码FLUKA来计算SEE和单事件发生(SEU)率。然后,该代码针对飞行中的数据进行了验证。此外,还将确定性代码CREME-96与FLUKA和飞行中的数据进行了比较。但是,FLUKA的运行时间很长(几天之内),并且CREME-96几年没有更新。本文将研究HZETRN 2010(在NASA兰利研究中心开发的确定性运输代码)作为可用于分析SEE和SEU费率的另一工具的用途。使用HZETRN而不是FLUKA和CREME-96的好处在于,它具有非常快的运行时间(以分钟为单位),并且在考虑剂量时已显示出与其他确定性和蒙特卡洛代码相似的准确性[2,3 ,4]。 HZETRN的2010版本更新了其对中子的处理,因此比以前的版本提高了准确性。在本文中,线性能量转移(LET)光谱是令人关注的,而不是总电离剂量。因此,将从HZETRN 2010输出的LET光谱与FLUKA和飞行中的数据进行比较,以验证HZETRN 2010作为通过分析进行SEE鉴定的计算工具。此外,将研究将这些数据外推至1 AU时的行星际环境,以确定HZETRN 2010是否可以成功,可靠地用于深空任务分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号