首页> 外文OA文献 >DFT-based Kinetic Monte Carlo simulations of oxidation reactions over the RuO2(110) model catalyst surface
【2h】

DFT-based Kinetic Monte Carlo simulations of oxidation reactions over the RuO2(110) model catalyst surface

机译:基于DFT的RuO2(110)模型催化剂表面氧化反应的动力学Monte Carlo模拟

摘要

Within this dissertation, parameter sets for the Kinetic Monte Carlo KMC) simulation of the CO and HCl oxidation reactions were derived using density functional theory (DFT) and a cluster expansion. The parameter sets include activation energies and lateral interactions. The simulations were conducted over a wide range of reaction conditions and the obtained results were compared to experimental data and results from previous simulation models. In the case of the CO oxidation the comparison of KMC-simulated temperature-programmed desorption spectra to the corresponding experimental spectra reveals flaws in the DFT calculations, resulting in overbinding of COot and Oot and underbinding of CObr. The kinetics of the reaction under ultrahigh vacuum conditions are well-reproduced by the simulation only at near-stoichiometric gas feeds. Under strongly oxidizing and strongly reducing conditions the catalyst activity is underestimated. The apparent activation energy obtained at pressures in the millibar range (85-91 kJ/mol) agrees very well with the experimental value (75-85 kJ/mol). Because the present simulation model properly accounts for how the adsorption energy of CObr depends on neighboring species, it outperforms the previous experiment-based simulation model at higher temperatures. Additionally, the simulations reveal important information about the effect of lateral interactions in the kinetics of the CO oxidation over RuO2(110).The simulation results for the HCl oxidation over RuO2(110) agree very well with the experimental results overall. Only the reaction order in Cl2 is not well-described by the model. The discrepancy seems to be of mechanistic origin because even semi-empirically adjusting the adsorption energies of Oot and Clot to account for over- and underbinding was not able to completely correct the deviations.Under conditions where the simulations agree well with the experiments, more insight into the surface processes can be obtained from the simulation results. This includes atomistic explanations for the observed reaction orders and the rate-determining step under different conditions. O2 adsorption, as previously proposed from experiments, was confirmed as the rate-determining step for HCl-rich gas feeds. For oxidizing conditions, the rate-determining step changes to HCl adsorption and the OHbr + Oot hydrogen transfer, indicating inhibited H2O formation. The basicity of the catalyst surface has turned out to be an important factor for the catalyst activity. The basicity was found to dynamically adapt to the reaction conditions: through surface chlorination, the the Obr-H bond is weakened. This is very important because the strength of the Obr-H bond strongly determines the OHbr + Oot/Obr + OHot equilibrium. Shifting this equilibrium toward OHot promotes H2O formation. From a spatially resolved simulation analysis it can be concluded that the optimal bridge chlorination degree for H2O formation is 1/3.The apparent activation energy is overestimated by the KMC model, which can be traced back to shortcomings of the description of the reactor model. From conversion-dependent calculations it was estimated that the correct apparent activation energy should be obtainable by properly accounting for different conversion levels at different temperatures.
机译:在本文中,利用密度泛函理论(DFT)和聚类展开法推导了CO和HCl氧化反应的动力学蒙特卡洛模拟(MC动力学)的参数集。参数集包括激活能和横向相互作用。在广泛的反应条件下进行了模拟,并将所得结果与实验数据和先前模拟模型的结果进行了比较。在CO氧化的情况下,将KMC模拟的程序升温脱附光谱与相应的实验光谱进行比较,发现DFT计算存在缺陷,从而导致COot和Oot的过度结合以及CObr的结合不足。仅在接近化学计量的气体进料下,模拟才能很好地再现超高真空条件下的反应动力学。在强氧化和强还原条件下,催化剂活性被低估了。在毫巴范围(85-91 kJ / mol)的压力下获得的表观活化能与实验值(75-85 kJ / mol)非常吻合。因为当前的仿真模型正确地解释了CObr的吸附能量如何依赖于邻近的物种,所以它在更高的温度下优于以前的基于实验的仿真模型。此外,模拟揭示了有关侧向相互作用对RuO2(110)上CO氧化动力学的影响的重要信息.RuO2(110)上HCl氧化的模拟结果与整体实验结果非常吻合。该模型仅无法很好地描述Cl2中的反应顺序。这种差异似乎是机械性的原因,因为即使半经验性地调整Oot和Clot的吸附能以解决过度结合和结合不足也无法完全纠正偏差。在模拟与实验很好吻合的条件下,更多的见解由模拟结果可以得出进入表面的过程。这包括在不同条件下观察到的反应顺序和速率确定步骤的原子性解释。如先前从实验中提出的,O 2吸附被证实为富HCl气体进料的速率决定步骤。对于氧化条件,速率确定步骤更改为HCl吸附和OHbr + Oot氢转移,表明抑制了H2O的形成。事实证明,催化剂表面的碱度是催化剂活性的重要因素。发现碱度动态地适应了反应条件:通过表面氯化作用,Obr-H键被削弱。这非常重要,因为Obr-H键的强度强烈决定了OHbr + Oot / Obr + OHot平衡。将这种平衡向OHot转移会促进H2O的形成。从空间解析模拟分析可以得出,H2O形成的最佳桥氯化度为1 / 3.KMC模型高估了表观活化能,这可以追溯到反应器模型描述的缺点。从依赖于转化的计算中,估计通过适当考虑不同温度下的不同转化率,可以获得正确的表观活化能。

著录项

  • 作者

    Heß Franziska;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号