首页> 外文OA文献 >Hydrogen-Bonding (Thio)urea Organocatalysts in Organic Synthesis : State of the art and practical methods for acetalization, tetrahydropyranylation, and cooperative epoxide alcoholysis
【2h】

Hydrogen-Bonding (Thio)urea Organocatalysts in Organic Synthesis : State of the art and practical methods for acetalization, tetrahydropyranylation, and cooperative epoxide alcoholysis

机译:有机合成中的氢键合(硫)脲有机催化剂:缩醛化,四氢吡喃基化和环氧化物醇解的最新技术和实用方法

摘要

In synthetic organic chemistry the activation of the electrophile, e.g, in nucleophile-electrophile reactions is the domain of Brønsted-acid and metal(-ion) centered Lewis-acid catalysts. They are highly efficient, but suffer from drawbacks resulting from their covalent substrate binding (e.g., product inhibition, high loading, harsh conditions), heavy metal(-ion) contamination (toxicity, lability, costs, time-consuming purification), and/or acidity (substrate/product decomposition, side reactions).To circumvent these drawbacks heavy metal(-ion)- and acid-free, non-covalent and, however, powerful, cost-efficient, stable, and sustainable catalysts operating under mild, (nearly) neutral conditions are highly desirable, e.g., for applications in pharmaceutical and nutrition chemistry. Hydrogen-bonding (thio)urea organocatalysts, purely organic compounds utilizing non-covalent substrate binding, were suggested to meet these requirements. However, their catalytic potential for organic synthesis had been unutilized.This PhD thesis therefore aims at the development of hydrogen-bonding (thio)urea organocatalysts and their implementation in useful preparative-scale organic syntheses. Experimental, analytical (NMR, IR, GC, GC/MS, HPLC, HRMS) as well as computational approaches were utilized. Six chapters document the research projects and results achieved in course of this PhD thesis:The chapter "(Thio)urea Organocatalysts" based on intensive literature research critically and comprehensively reviews the success story and applications of all hydrogen-bonding mono- and bifunctional (thio)urea organocatalysts in (non-)stereoselective organic synthesis for the period 1984–2008; (184 schemes; 64 figures). It is entirely published as core contribution (204 printed pages, chapter 6) in the Wiley-book "Hydrogen Bonding in Organic Synthesis": "Chapter 6, dedicated to organocatalysis using thioureas, is a real gem! ... The chapter is self-contained and could be easily reprinted as a separate book." (cited from book review: J. Am. Chem. Soc. 2010, 132, 6863)Five practical organocatalytic procedures (1.)–(5.) were developed; the resulting three original journal publications are given in chapter 2:(1.) The acetalization of aldehydes and ketones in the presence of orthoester as alcoholate source (14 substrate examples), (2.) the tetrahydropyran (THP) protection (tetrahydropyranylation), and (3.) the 2-methoxypropene (MOP) protection of diverse alcohols, phenols, and other ROH derivatives (more than 40 examples) were found to be catalyzed by the N,N´-bis[3,5-(trifluoromethyl)phenyl]thiourea at very low loadings (0.001–1 mol%). Catalytic efficiency is high with TON values of 100,000 and TOF values of up to 5700/h. These are the most efficient organocatalytic reaction reported to date. A recyclable polystyrene-bound thiourea catalyst was introduced to improve the practicability further as demonstrated in selected THP protections.The (4.) completely regioselective alcoholysis of styrene oxides (18 examples) and (5.) the direct formation of 1,3-dioxolanes from carbonyl compounds and styrene oxides (11 examples) turned out to require a cooperative Brønsted acid-type organocatalytic system; it comprises of the individual components mandelic acid (1 mol %) and N,N´-bis[3,5-(trifluoromethyl)phenyl]thiourea (1 mol %). This "Cooperative organocatalysis" is an innovative and seminal catalysis concept developed herein; various applications appear to be feasible such as "activity tailoring".The procedures (1.)–(5.) operate under mild (25 or 50 °C), (nearly) neutral conditions, tolerate a broad substrate scope, e.g., stericallyhindered, acid- and T-sensitive substrates. Excellent yields at high purities (more than 99.5%) and ready work-up even inroutine preparative-scale experiments (up to 200 mmol) underline their synthetic utility. Acyclic, cyclic acetals (1,3-dioxolanes) (from 1. and 5.), THP (2.) and MOP ethers (3.) as well as beta-alkoxy alcohols (4.), all synthetically useful compound classes, for the first time have become organocatalytically accessible.Based on both experiments and high-level computations for each method a detailed mechanistic scenario is visualized as catalytic cycle to interpret product formation and the catalyst’s mode of action through explicit double hydrogen bonding; novel activation concepts were identified.Additionally, this PhD thesis presents a straightforward multi-gram preparation of the privileged N,N´-bis[3,5-(trifluoromethyl)phenyl]thiourea catalyst (scale: 100 mmol; yield 36.1 g; 84%) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (scale: 40 mmol; yield: 8.0 g; 74%).Eight Chiral oxazoline-thiourea derivatives incorporating the 3,5-bis(trifluoromethylphenyl)thiourea moiety were prepared utilizing the experimental protocol elaborated herein. They were envisioned to serve as bifunctional enantioselective hydrogen-bonding catalysts; test reactions revealed this novel thiourea class to be catalytically inactive likely owing to a strong intramolecular hydrogen bond; modified oxazoline-thiourea structures and synthetic routes are suggested and discussed.The crystal structure of N,N´-bis[3,5-(trifluoromethyl)phenyl]thiourea was measured with X-ray diffraction, solved, and refined; it is illustrated with all crystallographic key data, selected bond lengths, and angles. The syn orientation of the NH protons (trans/trans rotamer) crucial for the catalyst’s clamp-like double hydrogen-bonding interactions is confirmed.Beyond catalysis: The gram-scale syntheses of 4-(methylthio)butyl isothiocyanate (ITC) (Erucin) and 5-(methylthio)pentyl isothiocyanate (Berteroin) were developed. These four-step, cost-efficient syntheses provided these ITCs in high grade (more than 99.9%) for a series of cancer research studies in human HepG2 cells test systems. The interdisciplinary medical chemistry project demonstrated the ITCs to be "Janus" compounds with ambivalent character both significant genotoxicity and antigenotoxicity.
机译:在合成有机化学中,亲核试剂-亲电试剂中亲电试剂的活化是布朗斯台德酸和以金属(离子)为中心的路易斯酸催化剂的领域。它们是高效的,但由于其共价底物结合(例如,产物抑制,高负载,苛刻条件),重金属(离子)污染(毒性,不稳定性,成本,耗时的纯化)和/引起的缺点受到困扰为避免这些缺点,可以避免重金属(-离子)和酸的产生,产生非共价键,但是功能强大,成本效益高,稳定且可持续的催化剂可在温和的条件下运行, (几乎)中性条件是非常期望的,例如,在药物和营养化学中的应用。氢键合(硫)脲有机催化剂是利用非共价底物键合的纯有机化合物,建议满足这些要求。然而,它们的有机合成催化潜力尚未得到充分利用。因此,本博士学位论文的目的是开发氢键合(硫)脲有机催化剂,并将其应用于有用的制备规模的有机合成中。利用了实验性,分析性(NMR,IR,GC,GC / MS,HPLC,HRMS)以及计算方法。六章记录了本博士学位论文的研究项目和取得的成果:基于大量文献研究的“(硫代)脲脲有机催化剂”一章对所有氢键合单官能和双官能(硫代)的成功故事和应用进行了严格而全面的回顾。 (非)立体选择性有机合成中的脲有机催化剂,1984-2008年; (184个方案; 64个数字)。它完全作为核心贡献(204页印刷,第6章)在Wiley书“有机合成中的氢键”中发表:“第6章致力于使用硫脲进行有机催化,是真正的宝石! -包含在内,可以很容易地作为一本单独的书转载。” (引自书评:J。Am。Chem。Soc。2010,132,6863)开发了五种实用的有机催化程序(1.)至(5.);在第2章中给出了所得的三份原始期刊出版物:(1.)在原酸酯作为醇源的情况下醛和酮的缩醛化反应(14个底物实例),(2。)四氢吡喃(THP)保护(tetrahydropyranylation), (3.)发现各种醇,酚和其他ROH衍生物的2-甲氧基丙烯(MOP)保护(超过40个例子)是由N,N′-双[3,5-(三氟甲基)催化的苯基]硫脲的负载量非常低(0.001-1 mol%)。 TON值为100,000,TOF值为5700 / h,催化效率很高。这些是迄今为止报道的最有效的有机催化反应。引入可回收的聚苯乙烯键合硫脲催化剂以进一步提高实用性,如在选定的THP保护中所证明的。(4。)完全区域选择性氧化苯乙烯氧化物的醇解反应(18个实例)和(5.)直接形成1,3-二氧戊环由羰基化合物和苯乙烯氧化物制成的(11个实例)证明需要布朗斯台德酸型有机催化协同体系;它包含单个成分扁桃酸(1摩尔%)和N,N'-双[3,5-(三氟甲基)苯基]硫脲(1摩尔%)。该“合作有机催化”是本文开发的创新性和开创性催化概念。各种应用看来都是可行的,例如“活性定制”。程序(1。)-(5。)在温和的(25或50°C),(接近)中性条件下运行,可以承受较宽的底物范围,例如空间受限,酸和T敏感底物。高纯度(超过99.5%)的出色收率,甚至常规的制备规模实验(高达200 mmol)也可以进行后处理,突显了它们的合成效用。非环状环状缩醛(1,3-二氧戊环)(分别来自1.和5.),THP(2.)和MOP醚(3.)以及β-烷氧基醇(4.),所有这些都是合成上有用的化合物,根据实验和每种方法的高级计算,详细的机理情景可视化为催化循环,以解释产物的形成和通过显式双氢键作用的催化剂的作用方式。此外,本博士学位论文还介绍了一种简单的多克分子制备方法,可用于制备优先的N,N´-双[3,5-(三氟甲基)苯基]硫脲催化剂(规模:100 mmol;产量36.1 g; 84) %)和3,5-双(三氟甲基)苯基异硫氰酸酯(规模:40 mmol;产量:8.0 g; 74%)。八种手性恶唑啉-硫脲衍生物利用本文详述的实验方案,制备了5-5-双(三氟甲基苯基)硫脲部分。设想它们可以用作双功能对映选择性氢键催化剂。测试反应表明,这种新型的硫脲类可能由于强分子内氢键而没有催化活性。提出并讨论了改性的恶唑啉-硫脲的结构和合成路线。通过X射线衍射测量,解析和精制了N,N′-双[3,5-(三氟甲基)苯基]硫脲的晶体结构。所有晶体关键数据,选定的键长和角度都对它进行了说明。 NH质子(反式/反式旋转异构体)的同向取向对于催化剂的钳型双氢键相互作用至关重要。开发了Erucin)和5-(甲硫基)戊基异硫氰酸酯(Berteroin)。这些四步,经济高效的合成为这些人类IpG2细胞测试系统中的癌症研究提供了高质量(超过99.9%)的ITC。跨学科的化学化学项目表明,ITC是具有明显遗传毒性和抗原毒性的矛盾特征的“ Janus”化合物。

著录项

  • 作者

    Kotke Mike;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号