首页> 外文OA文献 >Real-space finite difference PAW method for large-scale applications on massively parallel computers
【2h】

Real-space finite difference PAW method for large-scale applications on massively parallel computers

机译:大规模并行计算机上大规模应用的实空间有限差分PAW方法

摘要

Simulations of materials from first-principles have improved drastically over the last decades, benefitting from newly developed methods and access to increasingly larger computing resources. Nevertheless, a quantum mechanical description of a solid without approximations is not feasible. In the wide field of methods for ab-initio calculations of the electronic structure, density functional theory and, in particular, the local density approximation have turned out to make also simulations of large systems accessible. Density functional calculations provide insight into the processes happening in a vast range of materials by their access to an understandable electronic structure in the framework of the Kohn-Sham single particle wave functions. A lot of functionalities in the fields of electronic devices, catalytic surfaces, molecular synthesis and magnetic materials can be explained analyzing the resulting total energies, ground state structures and Kohn-Sham spectra. However, challenging physical problems are often accompanied with calculations including a huge number of atoms in the simulation volume, mostly due to very low symmetry. The total workload of wave function based DFT scales roughly quadratically with the number of atoms. This leads to the necessity of supercomputer usage. In the present work, an implementation of DFT on real-space grids has been developed, suited for making use of the massively parallel computing resources of moder supercomputers. Massively parallel machines are based on distributed memory and huge numbers of compute nodes, easily exceeding 100,000 parallel processes. An efficient parallelization of density functional calculations is only possible when the data can be stored process-local and the amount of inter-node communication is kept low. Our real-space grid approach with a three-dimensional domain decomposition provides an intrinsic data locality and solves both, the Poisson equation for the electrostatic problem and the Kohn-Sham eigenvalue problem, on a uniform real-space grid. The derivative operators are approximated by finite-differences leading to localized operators which require only communication with the nearest neighbor processes. This causes an excellent parallel performance at large system sizes. Treating only valence electrons, we apply the projector augmented wave method for an accurate modelling of energy contributions and scattering properties of the atomic cores. In addition to the real-space grid parallelization, we apply a distribution of the workload of different Kohn-Sham states onto parallel processes. This second parallelization level avoids the memory bottleneck at large system sizes and introduces even more parallel speedup. Calculations of systems with up to 3584 atoms of Ge, Sb and Te have been performed on (up to) all 294,912 cores of JUGENE, the massively parallel supercomputer installed at the Forschungszentrum Jülich.
机译:在过去的几十年中,得益于新开发的方法以及对越来越大的计算资源的访问,来自第一性原理的材料模拟已经得到了极大的改善。然而,没有近似的固体的量子力学描述是不可行的。在电子结构的从头算的方法的广泛领域中,密度泛函理论,尤其是局部密度近似已被证明也使大型系统的仿真成为可能。密度泛函计算通过访问Kohn-Sham单粒子波函数框架中的可理解电子结构,可以深入了解各种材料中发生的过程。可以解释电子设备,催化表面,分子合成和磁性材料领域的许多功能,从而分析所产生的总能量,基态结构和Kohn-Sham光谱。但是,具有挑战性的物理问题通常伴随着计算,其中包括仿真体积中的大量原子,这主要是由于非常低的对称性。基于波函数的DFT的总工作量大约与原子数成正比。这导致使用超级计算机的必要性。在当前的工作中,已经开发了在实际空间网格上实现DFT的实现,适合于利用现代超级计算机的大规模并行计算资源。大规模并行计算机基于分布式内存和大量计算节点,很容易超过100,000个并行进程。仅当可以在过程本地存储数据并且节点间通信量保持较低时,密度函数计算的高效并行化才有可能。我们的具有三维域分解的实空间网格方法提供了固有的数据局部性,并在统一的实空间网格上同时解决了静电问题的泊松方程和科恩-沙姆特征值问题。导数运算符通过有限差分来近似,从而导致局部运算符仅需要与最近邻进程进行通信。在大型系统中,这会导致出色的并行性能。仅处理价电子,我们使用投影仪增强波方法对原子核的能量贡献和散射特性进行精确建模。除了实际空间网格并行化,我们还将不同的Kohn-Sham状态的工作负载分布应用于并行进程。第二个并行化级别避免了大型系统规模时的内存瓶颈,并带来了更高的并行速度。已经(最多)JUGENE的全部294,912个核(在ForschungszentrumJülich上安装的大型并行超级计算机)上执行了最多具有3584个Ge,Sb和Te原子的系统的计算。

著录项

  • 作者

    Baumeister Paul Ferdinand;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号