首页> 外文学位 >Finite-difference inhomogeneous anisotropic modeling of bioelectric phenomena on a massively parallel computer.
【24h】

Finite-difference inhomogeneous anisotropic modeling of bioelectric phenomena on a massively parallel computer.

机译:在大型并行计算机上对生物电现象进行有限差分的非均质各向异性建模。

获取原文
获取原文并翻译 | 示例

摘要

Numerical methods have become the viable tools for solving scientific and engineering problems which do not have any known analytical solution. The finite difference method is one of the most commonly used numerical methods which requires less computational resources than some other methods, e.g., finite element method, and is thus attractive for solving large problems. In general the computational requirements can increase significantly with the problem's dimension and the complexity of the material medium. This becomes especially critical for problems that are time dependent or need to be solved many times.; This work is motivated from the need of a computationally efficient method which can handle time-dependent problems involving large domains with complex mediums, e.g., inhomogeneous and anisotropic mediums. In this respect, a new finite difference formulation is used to solve the elliptic Laplace's equation in two and three dimensions for both continuously and discretely inhomogeneous anisotropic mediums. It is then extended to solve the coupled, time-dependent nonlinear bidomain equations, which are widely used to model bioelectric phenomenons in cardiac tissue.; Modeling biological systems is one of the most computationally challenging work due to the inherently complicated structure and complex nonlinear dynamics involved. The new formulations are used to model bioelectric phenomenons in two different inhomogeneous anisotropic systems. First, it is used to solve the governing Laplace's equation and obtain the potential distribution in a canine torso during electrical defibrillation. Then, it is used to solve the bidomain equations in a study of action potential propagation in cardiac tissue during electrical stimulation.; Previous finite difference studies on bioelectric phenomenons in the torso and cardiac tissue have disregarded the anisotropic inhomogeneity of these structures. The incorporation of the anisotropic inhomogeneity in the new numerical models allows a more realistic representation of these structures, which in turn will provide more accurate solutions of the bioelectric problems.; Since a large number of finite difference nodes are required to represent realistic sizes of the thoracic volume conductor or cardiac tissue, it is still beyond the capacity of any conventional computer to provide the computational resources required for the realistic models considered in this study. To resolve this issue, a massively parallel computer, the Connection Machine CM-5 is used to implement the models.; In the chapters of this dissertation, the new finite difference formulations are described and verified, and their applications in modeling the thoracic volume conductor and cardiac tissue are presented together with computational performance and physiological results.
机译:数值方法已成为解决科学和工程问题的可行工具,这些方法没有任何已知的分析解决方案。有限差分法是最常用的数值方法之一,它比诸如有限元法的某些其他方法需要较少的计算资源,因此对于解决大问题很有吸引力。通常,计算要求会随着问题的尺寸和材料介质的复杂性而显着增加。这对于与时间有关或需要多次解决的问题尤为重要。这项工作的出发点是需要一种计算有效的方法,该方法可以处理与时间相关的问题,这些问题涉及具有复杂介质(例如非均质和各向异性介质)的大区域。在这方面,对于连续和离散非均质各向异性介质,使用新的有限差分公式来求解二维和三维的椭圆拉普拉斯方程。然后将其扩展为求解耦合的,与时间相关的非线性双域方程,该方程被广泛用于对心脏组织中的生物电现象进行建模。由于固有的复杂结构和复杂的非线性动力学,对生物系统进行建模是最具计算挑战性的工作之一。新的公式用于模拟两个不同的非均质各向异性系统中的生物电现象。首先,它用于求解控制拉普拉斯方程,并获得电除颤过程中犬躯干中的电势分布。然后,在研究电刺激过程中心脏组织中动作电位传播时,将其用于求解双域方程。先前对躯干和心脏组织中生物电现象的有限差异研究忽略了这些结构的各向异性不均匀性。各向异性的不均匀性在新的数值模型中的结合可以更真实地表示这些结构,从而为生物电问题提供更准确的解决方案。由于需要大量的有限差分节点来表示胸腔体积导体或心脏组织的实际大小,因此仍然无法提供任何常规计算机的能力来提供本研究中考虑的实际模型所需的计算资源。为了解决此问题,使用了大型并行计算机Connection Machine CM-5来实现模型。在本文的各章中,对新的有限差分公式进行了描述和验证,并介绍了它们在胸体积导体和心脏组织建模中的应用以及计算性能和生理结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号