首页> 外文OA文献 >Cyanid-Phytoremediation mit Eichhornia crassipes : eine alternative Methode zur Aufbereitung cyanid- und kupferhaltiger Abwässer aus dem Goldbergbau
【2h】

Cyanid-Phytoremediation mit Eichhornia crassipes : eine alternative Methode zur Aufbereitung cyanid- und kupferhaltiger Abwässer aus dem Goldbergbau

机译:凤眼莲对氰化物的植物修复:金矿中氰化物和含铜废水的另一种处理方法

摘要

Most of the highly toxic cyanide used in industrial mining is handled without observable devastating consequences, but in informal, small-scale mining, the use is poorly regulated and the waste treatment is insufficient. Cyanide in the effluents from the latter mines could possibly be removed by constructed wetlands with water hyacinths (Eichhornia crassipes) because of its high biomass production, wide distribution, and tolerance to cyanide and metals. The aim of this thesis was to evaluate the use of E. crassipes for the treatment of gold mining effluents containing high amounts of cyanide and copper. The phytotoxicity and the cyanide and copper removal-capacity were tested in lab-scale experiments. The cyanide degradation studies were performed applying 14C-labelled potassium cyanide (K14CN). The results were verified with E. crassipes in field scale in the hydraulically controlled treatment plant AMOVA. Toxicity to cyanide and copper was quantified by measuring the mean relative transpiration over 96 h. At 5 mg CN or Cu L–1, only a slight reduction in transpiration-rate was visible. The EC50 value was calculated by probit analysis to be 13 mg CN L–1 and 29.8 mg Cu L–1. If copper and cyanide were supplied simultaneously phytotoxicity decreased. This effect was due to the detained absorption of copper in complex form. E. crassipes removed approximately 98% of applied copper in 24 h. Copper absorption was enhanced in solutions with lower pH (pH 5.5). The copper content in the leaves did not increase obviously, compared to the control plants, whereas the content in roots was 500-fold higher (12 mg (g dry weight)–1). The copper-cyanide complex was not absorbed significantly (p > 0.05) by the plants in 72 h. Metabolism of K14CN was measured in batch systems with leaf and root cuttings. Similar first-order removal kinetics were observed in all systems with plant tissue. Leaf cuttings converted about 10% to 14CO2 and accumulated about 35% of the applied radioactivity in the tissues. The calculated KM of the leaf cuttings was 12 mg CN L–1, and the vmax was 33 mg CN (kg fresh weight)–1 h–1 (non linear regression). The radioactivity in the tissues was not attributed to 14C-labelled cyanide. The production of 14CO2 was probably due to metabolism of asparagine, the metabolite of cyanide in plants described in the literature. The formation of 14C-labelled asparagine and aspartic acid was verified after an extraction with ethanol and derivatisation with PITC. The fate of K14CN in entire plants was investigated using water hyacinths in hydroponic-systems, which were set in flow through systems connected to NaOH traps. The radioactivity in the traps was attributed to leaf-volatilisation. The decrease of radioactivity in these experiments followed zero order kinetics. This probably indicated a diffusion controlled removal mechanism. After preincubation with cyanide the kinetic changed to first order. This phenomenon may point to a physiological adaptation of the plants and/or the root-associated microflora to cyanide. If copper was added simultaneously the removal of radioactivity was inhibited. Approximately 50% of the applied radioactivity of each experiment was found in the NaOH-traps. In consequence this amount of radioactivity was released by the leaves as 14CO2 or H14CN. The amount of radioactivity in root and leaf extract was similar, which showed a high root to shoot translocation. In semi-field scale experiments in the AMOVA, E. crassipes showed a higher tolerance to cyanide. The cyanide-removal capacity increased over the experimental period. On contrary to the findings of the lab-scale experiments the plants were able to tolerate cyanide in concentrations of 14 mg CN L–1 (adding 30 L of a 470 mg CN L–1 solution) without visible toxicity symptoms. The system showed a maximum cyanide removal capacity of 50 g NaCN in 70 h. Additionally CuCN removal was observed short time periods of 24-48 h. To examine if an adaption to cyanide appeared during the experimental period, plants from the AMOVA were tested in hydroponic experiments. These plants showed an 8-fold higher cyanide removal in comparison to plants from the greenhouse. One year later cyanide was applied in the AMOVA again, but this time without an adaption-period. The results of the previous year could not be reproduced. A slower cyanide removal was observed and about 70% of the plants died during the treatment. In consequence, an adaption to cyanide in the previous year most likely occurred und must be considered if this technique is applied in the treatment of gold mining effluents, to avoid overloading and collapsing of the treatment plant during the first applications. The results indicate a high potential of E. crassipes in treating cyanide effluents from small-scale gold mining.
机译:处理工业采矿中使用的大多数剧毒氰化物时,没有明显的破坏性后果,但是在非正式的小规模采矿中,使用监管不力,废物处理不足。后一矿山的废水中的氰化物可能被带有水葫芦的湿地(Eichhornia crassipes)去除,因为其生物量高,分布宽,对氰化物和金属具有耐受性。本论文的目的是评估使用景天芽孢杆菌来处理含大量氰化物和铜的金矿废水。在实验室规模的实验中测试了植物毒性以及氰化物和铜的去除能力。使用14 C标记的氰化钾(K14CN)进行氰化物降解研究。在水力控制的处理厂AMOVA中用田间鳞翅目大肠埃希菌验证了结果。通过测量96小时内的平均相对蒸腾量来量化对氰化物和铜的毒性。在5 mg CN或Cu L-1下,仅蒸腾速率略有降低。 EC50值通过概率分析计算为13 mg CN L-1和29.8 mg Cu L-1。如果同时提供铜和氰化物,则植物毒性降低。该作用归因于复杂形式的铜的滞留吸收。十字花科植物在24小时内去除了约98%的铜。在较低pH(pH 5.5)的溶液中,铜的吸收增加。与对照植物相比,叶子中的铜含量没有明显增加,而根中的铜含量则高了500倍(12毫克(克干重)–1)。植物在72小时内没有明显吸收氰化铜络合物(p> 0.05)。在带有叶和根插条的分批系统中测量了K14CN的代谢。在具有植物组织的所有系统中都观察到了相似的一级去除动力学。叶片屑将约10%的二氧化碳转化为14CO2,并在组织中累积了约35%的所施加放射性。计算得出的叶插穗的KM为12 mg CN L-1,vmax为33 mg CN(千克鲜重)-1 h-1(非线性回归)。组织中的放射性不归因于14C标记的氰化物。 14CO2的产生可能是由于天冬酰胺的代谢,天冬酰胺是文献中描述的植物中氰化物的代谢产物。用乙醇萃取并用PITC衍生化后,验证了14C标记的天冬酰胺和天冬氨酸的形成。使用水培系统中的水葫芦对整个植物中K14CN的命运进行了研究,水葫芦设置在流经与NaOH捕集阱相连的系统中。诱捕器中的放射性归因于叶片挥发。在这些实验中,放射性的降低遵循零级动力学。这可能表明了扩散控制的去除机理。与氰化物预孵育后,动力学变为一级。这种现象可能表明植物和/或与根相关的微生物区系对氰化物的生理适应性。如果同时添加铜,则放射性的去除受到抑制。在NaOH捕集阱中发现每个实验应用的放射性的大约50%。结果,叶片以14CO2或H14CN释放了这种放射性。根和叶提取物中的放射性含量相似,显示出高的根向茎易位。在AMOVA中进行的半田间规模试验中,景天肠杆菌对氰化物的耐受性更高。在实验期间,氰化物的去除能力增加。与实验室规模的实验结果相反,植物能够忍受浓度为14 mg CN L–1的氰化物(添加30 L的470 mg CN L–1溶液)而没有明显的毒性症状。该系统在70小时内最大去除氰化物的能力为50 g NaCN。另外,在24-48小时的短时间内观察到了CuCN的去除。为了检查在实验期间是否出现对氰化物的适应性,在水培试验中对来自AMOVA的植物进行了测试。与温室中的植物相比,这些植物的氰化物去除率高8倍。一年后,氰化物再次用于AMOVA,但这一次没有适应期。无法复制上一年的结果。观察到氰化物去除较慢,并且在处理期间约有70%的植物死亡。因此,如果将该技术用于金矿废水的处理,则必须考虑上一年对氰化物的适应性,并且必须考虑该技术,以避免在首次应用过程中处理厂的过载和塌陷。结果表明,在处理小规模金矿氰化物废水中,十字花科植物具有很高的潜力。

著录项

  • 作者

    Ebel Mathias;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号