首页> 外文OA文献 >Graphical representations of Ising and Potts models: stochastic geometry of the quantum Ising model and the space-time Potts model
【2h】

Graphical representations of Ising and Potts models: stochastic geometry of the quantum Ising model and the space-time Potts model

机译:Ising和Potts模型的图形表示:量子Ising模型和时空Potts模型的随机几何

摘要

Statistical physics seeks to explain macroscopic properties of matter in terms of microscopic interactions. Of particular interest is the phenomenon of phase transition: the sudden changes in macroscopicproperties as external conditions are varied. Two models in particular are of great interest to mathematicians, namely the Ising model of a magnet and the percolation model of a porous solid. These models in turn are part of the unifying framework of the random-cluster representation, a model for random graphs which was first studied byFortuin and Kasteleyn in the 1970’s. The random-cluster representation has proved extremely useful in proving important facts about the Ising model and similar models.In this work we study the corresponding graphical framework for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introducedby Lieb, Schultz and Mattis in the 1960’s. The second model is the space–time percolation process, which is closely related to the contact model for the spread of disease. In Chapter 2 we define theappropriate ‘space–time’ random-cluster model and explore a range of useful probabilistic techniques for studying it. The space–time Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treatedin this chapter, such as the fact that there is at most one unbounded fk-cluster, and the resulting lower bound on the critical value in Z.In Chapter 3 we develop an alternative graphical representation of the quantum Ising model, called the random-parity representation. This representation is based on the random-current representation ofthe classical Ising model, and allows us to study in much greater detail the phase transition and critical behaviour. A major aim of this chapter is to prove sharpness of the phase transition in the quantum Isingmodel—a central issue in the theory—and to establish bounds on some critical exponents. We address these issues by using the random-parity representation to establish certain differential inequalities, integrationof which give the results.In Chapter 4 we explore some consequences and possible extensions of the results established in Chapters 2 and 3. For example, we determine the critical point for the quantum Ising model in Z and in ‘star-like’ geometries.
机译:统计物理学试图用微观相互作用来解释物质的宏观性质。特别令人感兴趣的是相变现象:随着外部条件的变化,宏观性质的突然变化。数学家特别感兴趣两个模型,即磁体的伊辛模型和多孔固体的渗流模型。这些模型又是随机簇表示统一框架的一部分,该模型是Fortuin和Kasteleyn在1970年代首次研究的随机图模型。事实证明,随机聚类表示对于证明有关Ising模型和类似模型的重要事实非常有用。在这项工作中,我们研究了两个相关模型的相应图形框架。第一个模型是横向场量子Ising模型,它是Lieb,Schultz和Mattis在1960年代引入的原始Ising模型的扩展。第二种模型是时空渗流过程,它与疾病传播的接触模型密切相关。在第二章中,我们定义了适当的“时空”随机集群模型,并探索了一系列有用的概率技术来研究它。时空Potts模型是量子Ising模型的自然概括。这些模型中相变的基本属性将在本章中讨论,例如,最多存在一个无界的fk簇,以及Z的临界值的下界。在第3章中,我们开发了另一种图形Ising模型的一个表示,称为随机奇偶表示。该表示基于经典Ising模型的随机电流表示,并允许我们更详细地研究相变和临界行为。本章的主要目的是证明量子伊辛模型中相变的敏锐度(该理论中的核心问题)并确定某些关键指数的界限。我们通过使用随机奇偶表示来建立某些微分不等式来解决这些问题,这些不等式的积分给出了结果。在第4章中,我们探讨了第2章和第3章中建立的结果的某些后果和可能的扩展。例如,我们确定了临界点Z和“星形”几何中的量子伊辛模型的一个点。

著录项

  • 作者

    Björnberg Jakob Erik;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号