首页> 外文OA文献 >The Conjugate Addition- Elimination Reaction of Morita-Baylis-Hillman C- Adducts: A Density Functional Theory Study
【2h】

The Conjugate Addition- Elimination Reaction of Morita-Baylis-Hillman C- Adducts: A Density Functional Theory Study

机译:Morita-Baylis-Hillman C加合物的共轭加成-消除反应:密度泛函理论研究

摘要

The Morita-Baylis-Hillman (MBH) reaction is a very versatile synthetic protocol to synthesize various useful compounds containing several functional groups. MBH acetates and carbonates are highly valued compounds as they have good potential to be precursors for organic synthesis reactions due to their ease of modification and synthesis. This thesis utilizes Density Functional Theory (DFT) calculations to understand the mechanism and selectivity of an unexpected tandem conjugate addition-elimination (CA-E) reaction of allylic alkylated Morita-Baylis-Hillman C- adducts. This synthetic protocol was developed by Prof. Zhi-Yong Jiang and co-workers from Henan University, China. The reaction required the use of sub-stoichiometric amounts of an organic or inorganic Brøndst base as a catalyst and was achieved with excellent yields (96%) in neat conditions. TBD gave the highest yield amongst the organocatalysts and Cs2CO3 gave the highest yield amongst all screened bases. A possible mechanistic pathway was proposed and three different energy profiles were modeled using 1,5,7-triaza-bicyclo-[4.4.0]-dec-5-ene (TBD), Cs2CO3 and CO32- as catalysts. All three models were able to explain the experimental observations, revealing both kinetic and thermodynamic factors influencing the selectivity of the CA-E reaction. CO32- model gave the most promising result, revealing a significant energy difference of 17.9 kcal/mol between the transition states of the two differing pathways and an energy difference of 20.9 kcal/mol between the two possible products. Although TBD modeling did not show significant difference in the transition states of the differing pathways, it revealed an unexpected secondary non-covalent electrostatic interaction, involving the electron deficient C atom of the triaza CN3 moiety of the TBD catalyst and the O atom of a neighboring NO2- group in the intermediate. Subsequent modeling using a similar substrate proved the possibility of this non-covalent electrostatic interaction, as there was significant overlap of the orbital cloud present in both the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) of the molecule between the C atom of the triaza moiety belonging to the TBD catalyst and the O atom of the nitro group of the substrate. The Mayer bond order was of the C-O interaction was determined to be 0.138.
机译:Morita-Baylis-Hillman(MBH)反应是一种非常通用的合成方案,可以合成包含几个官能团的各种有用化合物。 MBH乙酸盐和碳酸盐是高价值的化合物,因为它们易于修饰和合成,因此很有可能成为有机合成反应的前体。本文利用密度泛函理论(DFT)计算来理解烯丙基烷基化的森田-贝利斯-希尔曼C-加合物的意外串联共轭加成-消除(CA-E)反应的机理和选择性。该合成规程由江志勇教授和中国河南大学的同事开发。该反应需要使用亚化学计量的有机或无机布朗斯碱作为催化剂,并且在纯净条件下以优异的收率(96%)实现。在所有筛选的碱中,TBD的产率最高,而Cs2CO3的产率最高。提出了一种可能的机理途径,并使用1,5,7-三氮杂双环-[4.4.0]-癸-5-烯(TBD),Cs2CO3和CO32-作为催化剂模拟了三种不同的能量分布。所有这三个模型都能够解释实验观察结果,揭示出影响CA-E反应选择性的动力学和热力学因素。 CO32模型给出了最有希望的结果,显示出两种不同途径的过渡态之间的能量差为17.9 kcal / mol,两种可能产物之间的能量差为20.9 kcal / mol。尽管TBD建模在不同路径的过渡态中没有显示出显着差异,但它揭示了意外的次级非共价静电相互作用,涉及到TBD催化剂的triaza CN3部分的缺电子C原子和附近的O原子NO2-基在中间。随后使用相似的基质进行建模证明了这种非共价静电相互作用的可能性,因为在分子之间的最高占据分子轨道(HOMO)和最低最低占据分子轨道(LUMO)中都存在明显的轨道云重叠。属于TBD催化剂的triaza部分的C原子和底物的硝基的O原子。确定C-O相互作用的Mayer键阶为0.138。

著录项

  • 作者

    Tan Davin;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号