首页> 外文OA文献 >Modélisation analytique et simulation numérique de la nucléation et de la propagation de la fissure cohésive couplée avec la plasticité
【2h】

Modélisation analytique et simulation numérique de la nucléation et de la propagation de la fissure cohésive couplée avec la plasticité

机译:塑性裂纹与塑性裂纹成核扩展的解析模型与数值模拟

摘要

The aims of this work is to study the cracks evolution under plasticity and nonuniform stress field effects by using cohesive zone model. Firstly, basing on the variational approach, the crack evolution in the elastoplastic material is investigated. The solutions for 1D beam under simple tension is expressed explicitly through the first and the second orders stability conditions of energy. This study shows us the plasticity effects on the material softening behavior as soon as crack appears. In fact, the global solution of the beam under described displacement is stable only if the beam length is lower than a characteristic length. This length is independent of plasticity hardening module but depends on Young modulus and on the second derivative of crack energy density. The energy formulations can be generalized for 3D structure. In this case, the plasticity and cohesive criteria become two curves in Mohr’s stresses plane. The comparison between theses curves allows us to consider the crack nucleation in the plastified domain. Secondly, the non-uniform stress field effects on the crack nucleation in the elastic material is highlighted. The analytical solution is established by using two-scales techniqueand complex analysis. The evolution of fully cohesive crack and partially non-cohesive crack is controlled by the stress gradient, which is related to a characteristic length. Different cohesive laws are used in our study. The sensitivity of solution to preexisting imperfection size is also explored. Finally, analytical results are validated by numerical simulations and the cohesive zone model in mixed mode is implemented in Code_Aster.
机译:这项工作的目的是通过使用内聚区模型研究塑性和非均匀应力场效应下的裂纹演化。首先,基于变分方法,研究了弹塑性材料中的裂纹演化。通过一阶和二阶能量稳定条件明确表示一维梁在简单张力下的解。这项研究向我们展示了一旦​​出现裂纹,塑性对材料软化行为的影响。实际上,仅在光束长度小于特征长度时,在所述位移下的光束的整体解才是稳定的。该长度与可塑性硬化模块无关,但取决于杨氏模量和裂纹能量密度的二阶导数。能量公式可以推广到3D结构。在这种情况下,可塑性和凝聚力准则成为莫尔应力平面中的两条曲线。这些曲线之间的比较使我们可以考虑塑化区域中的裂纹成核。其次,强调了非均匀应力场对弹性材料中裂纹形核的影响。通过两级技术和复杂分析来建立解析解。完全粘结裂纹和部分非粘结裂纹的演化受应力梯度的控制,应力梯度与特征长度有关。我们的研究使用了不同的内聚规律。还探讨了溶液对预先存在的缺陷尺寸的敏感性。最后,通过数值模拟验证了分析结果,并在Code_Aster中实现了混合模式下的内聚区模型。

著录项

  • 作者

    Pham Tuan Hiep;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号