首页> 外文OA文献 >Amélioration des méthodes de calcul de cœurs de réacteurs nucléaires dans APOLLO3 : décomposition de domaine en théorie du transport pour des géométries 2D et 3D avec une accélération non linéaire par la diffusion
【2h】

Amélioration des méthodes de calcul de cœurs de réacteurs nucléaires dans APOLLO3 : décomposition de domaine en théorie du transport pour des géométries 2D et 3D avec une accélération non linéaire par la diffusion

机译:APOLLO3中核反应堆堆芯计算方法的改进:带有非线性加速扩散的2D和3D几何输运理论中的域分解

摘要

This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems’ size ranging from colorsets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each subdomain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the subdomains). The multi-group problem is solved in each subdomain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the subdomains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of memory required for high-fidelity modeling. Thus, we have completed several modeling exercises to demonstrate the potential of the method: 2D full core calculation of a large pressurized water reactor and 3D colorsets of assemblies taking into account the constraints of space and energy discretization expected for high-fidelity modeling.
机译:本文致力于中子输运方程域分解方法的实现。这项工作的目的是获得高保真的确定性解决方案,以正确处理位于核反应堆堆芯中的异质性,解决问题的范围从组件的色集到2D和3D的大型反应堆堆芯配置。论文中开发的创新算法旨在优化并行性和内存的使用。该方法还旨在最大程度地减少并行实现对性能的影响。这些目标符合由CEA开发并由EDF和AREVA支持的APOLLO3项目的需求,该项目必须是可移植的代码(对特定体系结构没有优化),以便利用从个人计算机到可用计算群集的资源实现最佳估计建模供工程师分析。该算法是并行多组块雅可比算法。每个子域都被认为是具有体积源(裂变)和表面源(子域之间的界面通量)的多组固定源问题。在每个子域中都解决了多组问题,并且每次功率迭代都需要接口通量的单次通信。分辨率算法的光谱半径类似于采用非线性扩散加速方法的经典分辨率算法中的一种:众所周知的Coarse Mesh有限差分。这样,当计算并行化时,可以实现理想的可伸缩性。内存组织利用共享内存并行性,通过避免子域之间共享的数据的冗余副本来优化资源。通过混合共享方法可以使用分布式内存体系结构,该方法结合了共享内存并行性和分布式内存并行性这两种范例。对于大问题,这些体系结构提供了更多的处理器以及高保真建模所需的内存量。因此,我们已经完成了几次建模练习,以证明该方法的潜力:大型压水堆的2D全核计算和组件的3D颜色集,同时考虑到了高保真度建模所需的空间和能量离散化约束。

著录项

  • 作者

    Lenain Roland;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号