首页> 外文OA文献 >Boxicity And Cubicity : A Study On Special Classes Of Graphs
【2h】

Boxicity And Cubicity : A Study On Special Classes Of Graphs

机译:方度和方度:关于特殊图类的研究

摘要

Let F be a family of sets. A graph G is an intersection graph of sets from the family F if there exists a mapping f : V (G)→ F such that, An interval graph is an intersection graph of a family of closed intervals on the real line. Interval graphs find application in diverse fields ranging from DNA analysis to VLSI design.An interval on the real line can be generalized to a k dimensional box or k-box. A k-box B = (R1.R2….Rk) is defined to be the Cartesian product R1 × R2 × …× Rk, where each Ri is a closed interval on the real line. If each Ri is a unit length interval, we call B a k-cube. Thus, an interval is a 1-box and a unit length interval is a 1-cube. A graph G has a k-box representation, if G is an intersection graph of a family of k-boxes in Rk. Similarly, G has a k-cube representation, if G is an intersection graph of a family of k-cubes in Rk. The boxicity of G, denoted by box(G), is the minimum positive integer k such that G has a k-box representation. Similarly, the cubicity of G, denoted by cub(G), is the minimumpositive integer k such that G has a k-cube representation. Thus, interval graphs are the graphs with boxicity equal to 1 and unit interval graphs are the graphs with cubicity equal to 1.The concepts of boxicity and cubicity were introduced by F.S. Roberts in 1969. Deciding whether the boxicity (or cubicity) of a graph is at most k is NP-complete even for a small positive integer k. Box representation of graphs finds application in niche overlap (competition) in ecology and to problems of fleet maintenance in operations research. Given a low dimensional box representation, some well known NP-hard problems become polynomial time solvable.Attempts to find efficient box and cube representations for special classes of graphs can be seen in the literature. Scheinerman [6] showed that the boxicity of outerplanar graphs is at most 2. Thomassen [7] proved that the boxicity of planar graphs is bounded from above by 3. Cube representations of special classes of graphs like hypercubes and complete multipartite graphs were investigated in [5, 3, 4]. In this thesis, we present several bounds for boxicity and cubicity of special classes of graphs in terms of other graph parameters. The following are the main results shown in this work.1. It was shown in [2] that, for a graph G with maximum degree Δ, cub(G) ≤ [4(Δ+ 1) log n]. We show that, for a k-degenerate graph G, cub(G) ≤ (k + 2)[2e log n]. Since k is at most Δ and can be much lower, this clearly is a stronger result. This bound is tight up to a constant factor.2. For a k-degenerate graph G, we give an efficient deterministic algorithm that runs in O(n2k) time to output an O(k log n) dimensional cube representation.3. Crossing number of a graph G is the minimum number of crossing pairs of edges, over all drawings of G in the plane. We show that if crossing number of G is t, then box(G) is O(t1/4 log3/4 t). This bound is tight up to a factor of O((log t)1/4 ).4. We prove that almost all graphs have cubicity O(dav log n), where dav denotes the average degree.5. Boxicity of a k-leaf power is at most k -1. For every k, there exist k-leaf powers whose boxicity is exactly k - 1. Since leaf powers are a subclass of strongly chordal graphs, this result implies that there exist strongly chordal graphs with arbitrarily high boxicity6. Otachi et al. [8] conjectured that chordal bipartite graphs (CBGs) have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of CBGs that have unbounded boxicity. We first prove that the bipartite power of a tree (which is a CBG) is a CBG and then show that there exist trees whose bipartite powers have high boxicity. Later in Chapter ??, we prove a more generic result in bipartite powering. We prove that, for every k ≥ 3, the bipartite power of a bipartite, k-chordal graph is bipartite and k-chordal thus implying that CBGs are closed under bipartite powering.7. Boxicity of a line graph with maximum degree Δ is O(Δ log2 log2 Δ). This is a log2 Δ log log Δ factor improvement over the best known upper bound for boxicity of any graph [1]. We also prove a non-trivial lower bound for the boxicity of a d-dimensional hypercube.
机译:令F为一组集合。如果存在如下映射f:V(G)→F,则图G是来自族F的集合的相交图,区间图是实线上的封闭区间族的相交图。间隔图可应用于从DNA分析到VLSI设计的各个领域。实线上的间隔可以概括为k维盒或k维盒。 k框B =(R1.R2….Rk)被定义为笛卡尔乘积R1×R2×…×Rk,其中每个Ri是实线上的封闭区间。如果每个Ri是单位长度间隔,我们将B称为k立方体。因此,间隔是1个盒子,单位长度间隔是1个立方体。如果G是Rk中的一系列k盒的交集图,则图G具有k盒表示。同样,如果G是Rk中k个立方体族的交集图,则G具有k立方体表示。用box(G)表示的G的平方度是最小正整数k,因此G具有k盒表示。类似地,用cub(G)表示的G的立方度是最小正整数k,因此G具有k立方表示。因此,间隔图是方差等于1的图,单位间隔图是方差等于1的图.F.S。 Roberts于1969年提出。即使对于一个小的正整数k,确定一个图的方度(或三次方)是否最多为k是NP完全的。图的框表示法在生态学中的利基重叠(竞争)中以及运筹学中的车队维护问题中都有应用。给定低维的盒子表示形式,一些众所周知的NP难题变得可以解决多项式时间。在文献中可以找到为特殊类别的图找到有效的盒子和立方体表示形式的尝试。 Scheinerman [6]表示外平面图的直角性最大为2。Thomassen[7]证明平面图的直角性由3限制。3.研究了特殊图类的立方体表示,例如超立方体和完整的多部分图。 [5、3、4]。在本文中,我们针对其他图参数,给出了图的特殊类的方正性和立方性的几个界。以下是这项工作显示的主要结果:1。在[2]中示出,对于具有最大程度Δ的图G,cub(G)≤[4(Δ+ 1)log n]。我们表明,对于k个退化图G,cub(G)≤(k + 2)[2e log n]。由于k最多为Δ,并且可以低得多,因此这显然是一个更强的结果。这个界限严格到一个恒定因子。2。对于k个退化图G,我们给出了一种有效的确定性算法,该算法在O(n2k)时间内运行以输出O(k log n)维立方体表示形式.3。在平面上G的所有图形上,图形G的交叉数是边的交叉对的最小数目。我们证明,如果G的交叉数为t,则box(G)为O(t1 / 4 log3 / 4 t)。该界限严格到O((log t)1/4).4的因数。我们证明几乎所有图都具有三次方O(dav log n),其中dav表示平均度。5。 k叶幂的平方度最多为k -1。对于每k个,存在k个叶幂,其张正性恰好为k-1。由于叶幂是强和弦图的子类,因此该结果表明存在具有任意高张性的强和弦图。 Otachi等。 [8]推测和弦二部图(CBG)最多具有2个方格性。我们通过展示无限个具有无限方格性的CBGs系列来证明这一猜想。我们首先证明一棵树(它是CBG)的双方能力是CBG,然后证明存在存在二叉力具有高方性的树。在第二章的后面,我们证明了双向供电的更通用的结果。我们证明,对于每一个k≥3,一个二部,k-弦图的二部功率都是二部和k-弦的,因此表明CBG在二部功率的作用下是封闭的。7。具有最大程度Δ的折线图的矩形度为O(Δlog2 log2Δ)。这是log2Δlog log logΔ因子的提高,超过了任何图形[1]的矩形框的已知上限。我们还证明了d维超立方体的可塑性的不平凡的下界。

著录项

  • 作者

    Mathew Rogers;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号