首页> 外文OA文献 >CFD modelling of outflow and ductile fracture propagation in pressurised pipelines
【2h】

CFD modelling of outflow and ductile fracture propagation in pressurised pipelines

机译:压力管道中流出和韧性断裂扩展的CFD建模

摘要

This thesis describes the fundamental extension, development and testing of audmathematical model for predicting the transient outflow following the failure ofudpressurised pipelines. The above encompasses improvements to the theoretical basis andudnumerical stability, reduction in the computational runtime and the modelling ofudfracture propagation with particular reference to CO2 pipelines.udThe basic model utilises the homogeneous equilibrium model (HEM), where theudconstituent phases in two-phase mixtures are assumed to be in thermodynamic andudmechanical equilibrium. The resultant system of conservation equations are solvedudnumerically using the Method of Characteristics (MOC) coupled with a suitableudEquation of State to account for multi-component hydrocarbon mixtures.udThe first part of the study involves the implementation of the Finite Volume Methodud(FVM) as an alternative to the MOC. In the case of gas and two-phase hydrocarbonudpipeline ruptures, both models are found to be in excellent accord producing goodudagreement with the published field data. As compared to the MOC, the FVM showsudconsiderable promise given its significantly shorter computation runtime and its abilityudto handle non-equilibrium or heterogeneous flows.udThe development, testing and validation of a Dynamic Boundary Fracture Modelud(DBFM) coupling the fluid decompression model with a widely used fracture modeludbased on the Drop Weight Tear Test technique is presented next. The application of theudDBFM to an hypothetical but realistic CO2 pipeline reveals the profound impacts of theudline temperature and types of impurities present in the CO2 stream on the pipeline’sudpropensity to fracture propagation. It is found that the pure CO2 and the postcombustionudpipelines exhibit very similar and highly temperature dependent propensityudto fracture propagation. An increase in the line temperature from 20 – 30 oC results inudthe transition from a relatively short to a long running propagating facture. The situationudbecomes progressively worse in moving from the pre-combustion to the oxy-fuel stream. In the latter case, long running ductile fractures are observed at all theudtemperatures under consideration. All of the above findings are successfully explainedudby examining the fluid depressurisation trajectories during fracture propagation relativeudto the phase equilibrium envelopes.udFinally, two of the main shortcomings associated with previous work in the modellingudof pipeline ruptures are addressed. The first deals with the inability of Oke’s (2004)udsteady state model to handle non-isothermal flow conditions prior to rupture byudaccounting for both heat transfer and friction. The second removes the rupture planeudinstabilities encountered in Atti’s (2006) model when simulating outflow following theudrupture of ultra high pressure pipelines. Excellent agreement between the new nonisothermaludmodel predictions and the published data for real pipelines is observed.
机译:本文描述了用于预测压力降低的管道故障后的瞬时流出的数学模型的基本扩展,开发和测试。以上内容涵盖了对理论基础和数字稳定性的改进,减少了计算时间并特别参考了CO2管道 udfracture传播的建模。 ud基本模型利用了均质平衡模型(HEM),其中 u构成相假定两相混合物中的热力学和力学力学平衡。使用特征方法(MOC)结合适当的状态方程来求解合成的守恒方程组,以适当的状态方程来解释多组分烃混合物。本研究的第一部分涉及有限体积法的实现。 ud(FVM)替代MOC。在天然气和油气两相破裂的情况下,两个模型都与已发表的现场数据非常吻合。与MOC相比,FVM显示出 ud相当可观的前景,因为它显着缩短了计算运行时间,并且具有 ud处理非平衡或异构流的能力。 ud动态边界断裂模型的开发,测试和验证 ud(DBFM)耦合接下来,将介绍基于Drop Weight Tear Test技术的具有广泛使用的裂缝模型 ud的流体减压模型。 udDBFM在假设但实际的CO2管道中的应用揭示了 udline温度和CO2流中存在的杂质类型对管道的 u n u003d u003d u003d裂缝扩展的深远影响。发现纯CO2和后燃烧 udpipe表现出非常相似且高度依赖温度的倾向 udto裂缝扩展。线路温度从20 – 30 oC升高会导致从相对短的传播到长期运行的传播过程转变。从预燃烧转向含氧燃料流的情况逐渐变得更糟。在后一种情况下,在所考虑的所有低温下都观察到了长时间的延性断裂。通过检查相对于相平衡包络线的裂缝扩展过程中的流体减压轨迹,可以成功地解释所有上述发现。最后,解决了与管道破裂建模中先前工作相关的两个主要缺陷。第一种方法是处理Oke(2004)的非稳态模型无法处理破裂之前的非等温流动条件的问题,因为它无法同时考虑传热和摩擦。第二种方法消除了在模拟超高压管道破裂后的流出时在Atti(2006)模型中遇到的破裂平面的不稳定性。在新的非等温 udmodel预测与实际管道的已发布数据之间观察到极好的一致性。

著录项

  • 作者

    Brown S.F.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号