首页> 外文OA文献 >Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models?
【2h】

Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models?

机译:在60°S附近缺少地形重力波拖曳是否是化学-气候模型中平流层纬向风偏向的原因?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, muchudlike orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.
机译:几乎所有的化学-气候模型(CCM)都具有系统性的偏差,即南半球(SH)平流层极涡旋的春季分解延迟,这意味着平流层波阻力不足。在这项研究中,加拿大中层大气模型(CMAM)和CMAM数据同化系统(CMAM-DAS)用于调查产生这种偏差的原因。来自CMAMDAS的区域风向分析增量揭示了冬季和初春在平流层608S附近的系统负值。这些被解释为指示模型物理学中的偏差,即缺少重力波阻力(GWD)。负分析增量在冬季期间保持在几乎恒定的高度,并随着涡旋减弱而下降,这与地形上的GWD非常类似。该区域也是当前地形GWD参数化在波浪阻力方面存在差距的地方,这被认为是不现实的,因为这些参数化中缺少效果。这些发现激发了一对自由运行的CMAM仿真,以评估额外地形GWD 608S的影响。控制仿真显示了在CCM中看到的冷极偏置和延迟的涡流破坏。在具有额外GWD的仿真中,冷极偏置明显降低,涡旋更早地分解。平流层中解析波阻力的变化也响应于额外的GWD而发生,从而降低了春末和初夏平流层SH极帽的温度偏差。但是,减小动态偏差会导致南极柱臭氧的降解。这表明,在过强且持久的涡流存在下获得逼真的柱状臭氧的CCM可能通过补偿误差来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号