首页> 外文OA文献 >Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application
【2h】

Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application

机译:用于先进气冷反应堆的Relap5-3d模型验证和基准练习

摘要

High-temperature gas-cooled reactors (HTGR) are passively safe, efficient, andeconomical solutions to the world??s energy crisis. HTGRs are capable of generating hightemperatures during normal operation, introducing design challenges related to materialselection and reactor safety. Understanding heat transfer and fluid flow phenomenaduring normal and transient operation of HTGRs is essential to ensure the adequacy ofsafety features, such as the reactor cavity cooling system (RCCS). Modeling abilities ofsystem analysis codes, used to develop an understanding of light water reactorphenomenology, need to be proven for HTGRs. RELAP5-3D v2.3.6 is used to generatetwo reactor plant models for a code-to-code and a code-to-experiment benchmarkproblem.The code-to-code benchmark problem models the Russian VGM reactor forpressurized and depressurized pressure vessel conditions. Temperature profilescorresponding to each condition are assigned to the pressure vessel heat structure.Experiment objectives are to calculate total thermal energy transferred to the RCCS forboth cases. Qualitatively, RELAP5-3D??s predictions agree closely with those of othersystem codes such as MORECA and Thermix. RELAP5-3D predicts that 80% of thermal energy transferred to the RCCS is radiant. Quantitatively, RELAP5-3D computesslightly higher radiant and convective heat transfer rates than other system analysiscodes. Differences in convective heat transfer rate arise from the type and usage ofconvection models. Differences in radiant heat transfer stem from the calculation ofradiation shape factors, also known as view or configuration factors. A MATLAB scriptemploys a set of radiation shape factor correlations and applies them to the RELAP5-3Dmodel.This same script is used to generate radiation shape factors for the code-toexperimentbenchmark problem, which uses the Japanese HTTR reactor to determinetemperature along the outside of the pressure vessel. Despite lacking information onmaterial properties, emissivities, and initial conditions, RELAP5-3D temperature trendpredictions closely match those of other system codes. Compared to experimentalmeasurements, however, RELAP5-3D cannot capture fluid behavior above the pressurevessel. While qualitatively agreeing over the pressure vessel body, RELAP5-3Dpredictions diverge from experimental measurements elsewhere. This difference reflectsthe limitations of using a system analysis code where computational fluid dynamics codesare better suited.
机译:高温气冷堆(HTGR)是解决世界能源危机的被动安全,高效和经济的解决方案。高温气冷堆在正常运行期间会产生高温,从而带来与材料选择和反应堆安全性相关的设计挑战。了解HTGR的正常和瞬态运行过程中的传热和流体流动现象对于确保安全特性(例如反应堆腔冷却系统(RCCS))的适当性至关重要。用于HTGR的系统分析代码的建模能力(用于发展对轻水反应堆现象学的理解)需要得到证明。 RELAP5-3D v2.3.6用于针对代码对代码和代码对实验基准问题生成两个反应堆工厂模型。代码对基准问题是俄罗斯VGM反应堆用于加压和减压压力容器条件的模型。将与每种条件相对应的温度曲线分配给压力容器的热结构。实验目的是计算两种情况下传递给RCCS的总热能。定性地,RELAP5-3D的预测与其他系统代码(例如MORECA和Thermix)的预测非常一致。 RELAP5-3D预测传递到RCCS的热能中有80%是辐射性的。在数量上,RELAP5-3D计算出的辐射和对流传热速率比其他系统分析代码略高。对流传热速率的差异是由对流模型的类型和使用引起的。辐射传热的差异源于辐射形状因数(也称为视图或配置因数)的计算。 MATLAB脚本使用一组辐射形状因子相关性并将其应用于RELAP5-3D模型。该脚本用于生成代码-实验基准问题的辐射形状因子,该问题使用日本HTTR反应堆确定压力外部的温度容器。尽管缺少有关材料特性,发射率和初始条件的信息,但RELAP5-3D温度趋势预测与其他系统代码的预测趋势非常相似。但是,与实验测量相比,RELAP5-3D无法捕获压力容器上方的流体行为。尽管在压力容器本体上定性一致,但RELAP5-3D的预测与其他地方的实验测量结果有所不同。这种差异反映了使用系统分析代码的局限性,其中计算流体动力学代码更适合。

著录项

  • 作者

    Moore Eugene James Thomas;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号