首页> 外文OA文献 >Characterization of Plasticized CMC-NH4BR Based Biopolymer Electrolyte and Electrochemical Studies on the Solid-State Batteries
【2h】

Characterization of Plasticized CMC-NH4BR Based Biopolymer Electrolyte and Electrochemical Studies on the Solid-State Batteries

机译:增塑的CMC-NH4BR基生物聚合物电解质的表征及固态电池的电化学研究

摘要

Much research has been devoted to the preparation of solid polymer electrolytes made of various materials. Some of the wellknownudare synthetic polymer materials (petroleum resources) but these polymers are high in cost and the depletion of petroleumudresources coupled with increasing environmental regulation. For these reasons, a lot of effort has been made to develop theudelectrolytes using natural biopolymer materials. The increasing interest in green energy storage materials for electrochemicaluddevices with the development of polymer as electrolytes candidate has attracted great attention recently. It can offer a numberudof high-value opportunities, provided that lower costs can be obtained besides environmental friendly. Due to this matter, theuddevelopment of plasticized biodegradable polymer electrolytes (BPEs) has been accomplished in this work by incorporatingudvarious composition of EC with carboxy methylcellulose doped NH4Br via solution casting method. The plasticized polymer–udsalt complex formation and ionic conduction of BPEs have been analyzed through infrared spectroscopy and impedanceudmeasurement. Plasticization using EC in BPEs system helps the enhancement of NH4Br dissociation and therefore increases theudprotonation process in the system. The highest ionic conductivity obtained for CMC−NH4Br containing with 25 wt. % NH4Brudwas achieved at 1.12 x 10-4udS cm-1udand enhanced to 3.31 x 10-3udS cm-1 with addition of EC. The conductivity-temperature forudBPEs system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The electrochemical celludwere fabricated with the configuration of Zn + ZnSO4.7H2O | BPEs system | MnO2 for the highest conductivity and produced audmaximum open circuit voltage of 1.48 V at ambient temperature and showed good rechargeability.
机译:许多研究致力于由各种材料制成的固体聚合物电解质的制备。一些众所周知的/胆敢的合成聚合物材料(石油资源),但是这些聚合物成本高,石油无资源的消耗以及对环境的监管日益严格。由于这些原因,已经进行了很多努力来开发使用天然生物聚合物材料的电解质。随着作为电解质候选物的聚合物的发展,对用于电化学 ud装置的绿色能量存储材料的兴趣日益增加,这引起了人们的极大关注。它可以提供许多 udud高价值的机会,条件是除了环保以外还可以降低成本。由于此问题,通过溶液浇铸法将各种组成的EC与掺有羧甲基纤维素的NH4Br掺入EC,从而完成了增塑可生物降解聚合物电解质(BPE)的开发。 BPE的增塑聚合物- udsalt配合物的形成和离子传导已通过红外光谱和阻抗 u量测法进行了分析。在BPEs系统中使用EC进行塑化有助于增强NH4Br的离解,因此增加了系统中的质子化过程。对于含25 wt。%的CMC-NH4Br,获得的最高离子电导率。在1.12×10-4 udS cm-1 ud下获得%NH 4 Br ud,并通过添加EC提高到3.31×10-3 udS cm-1。 udBPEs系统的电导率温度遵循Arrhenius关系,其中离子电导率随温度增加。用Zn + ZnSO4.7H2O构型制造电化学电池。 BPEs系统| MnO2具有最高的电导率,并且在环境温度下产生的 u最大开路电压为1.48 V,并显示出良好的可充电性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号