首页> 外文OA文献 >Nanostructured pt/mno2 catalysts and their performance for oxygen reduction reaction in air cathode microbial fuel cell
【2h】

Nanostructured pt/mno2 catalysts and their performance for oxygen reduction reaction in air cathode microbial fuel cell

机译:纳米结构的pt / mno2催化剂及其在空气阴极微生物燃料电池中的氧还原反应性能

摘要

Microbial fuel cells (MFCs) represent a promising sustainable clean technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt change the urchin-like structure of MnO2 into cocoon-like structure of Pt/MnO2. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/ m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). There was a slight increase in COD removal efficiency of 0.4 wt% Pt/MnO2 (84%) compared to MnO2 and other Pt loading catalysts. The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance as well as higher COD removal efficiency.
机译:微生物燃料电池(MFCs)代表着一种有前途的可持续清洁技术,可同时进行生物发电和废水处理。催化剂是微生物燃料电池阴极成本的重要部分。许多材料已作为含水阴极进行了测试,但需要空气阴极以避免水曝气的能量需求。空气阴极的氧气还原反应(ORR)速度缓慢,需要高效的电催化剂,例如碳负载铂催化剂(Pt / C),这非常昂贵。氧化锰(MnO2)是一种代表性的金属氧化物,已被研究用作ORR的有希望的替代电催化剂,并已在空气阴极MFC中进行了测试。然而,单一的MnO 2具有差的电导率和低的稳定性。在目前的工作中,通过掺杂Pt纳米颗粒对MnO2催化剂进行了改性。这项工作的目标是在最小的Pt负载下提高MFC的性能。 MnO2和Pt纳米颗粒分别通过水热法和溶胶凝胶法制备。采用湿法浸渍法合成了Pt / MnO2催化剂。该催化剂还用作空气阴极立方MFC中的阴极催化剂,其中接种了厌氧污泥作为生物催化剂,而棕榈油厂出水(POME)作为阳极室中的底物。通过场发射扫描电子显微镜(FESEM),X射线衍射(XRD),X射线光电子能谱(XPS)和循环伏安法(CV)对所制备的Pt / MnO2进行了全面表征,其表面形貌,结晶度,分别检查了氧化态和电化学活性。 XPS显示Mn(IV)氧化态和Pt(0)纳米颗粒金属,表明存在MnO2和Pt。从FESEM观察到的Pt / MnO2的形态表明,Pt的掺杂将MnO2的野孩子状结构转变为Pt / MnO2的茧状结构。 Pt / MnO2催化剂的电化学活性面积已从276增加到617 m2 / g,而Pt的添加量从0.2重量%增加到0.8重量%。在O2饱和中性Na2SO4溶液中的CV结果表明MnO2和Pt / MnO2催化剂可以催化具有不同催化活性的ORR。具有Pt / MnO2(0.4 wt%Pt)作为空气阴极催化剂的MFC产生的最大功率密度为165 mW / m3,高于具有MnO2催化剂的MFC(95 mW / m3)的最大功率密度。与MnO2和其他负载Pt的催化剂相比,COD去除效率略有提高,为0.4 wt%Pt / MnO2(84%)。在操作的14天中,使用MnO2阴极操作的MFC的开路电压(OCV)逐渐降低,而使用Pt / MnO2阴极的MFC在整个操作过程中几乎保持恒定,这表明Pt / MnO2催化剂具有更高的稳定性。因此,具有0.4wt%Pt的Pt / MnO 2成功地证明是用于空气阴极MFC中的ORR的有效和低成本的电催化剂,具有较高的电化学活性,稳定性并因此具有增强的性能以及较高的COD去除效率。

著录项

  • 作者

    Chan Kar Min;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号