首页> 外文期刊>Environmental research >Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts
【24h】

Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts

机译:用钴和氮掺杂有序的介孔碳作为阴极催化剂处理废水的空气阴极微生物燃料电池中的氧还原反应

获取原文
获取原文并翻译 | 示例
           

摘要

The sluggish oxygen reduction reaction (ORR) on the cathode severely limits the energy conversion efficiency of microbial fuel cells (MFCs). In this study, cobalt and nitrogen co-doped ordered mesoporous carbon (Co_x-N-OMC) was prepared by heat-treating a mixture of cobalt nitrate, melamine and ordered mesoporous carbon (OMC). The addition of cobalt nitrate remarkably improved the ORR reactivity, compared to the nitrogen-doped OMC catalyst. By optimizing the dosage of cobalt nitrate (x = 0.6, 0.8 and 1.0 g), the Coo.s-N-OMC catalyst displayed excellent ORR catalytic performances in neutral media with the onset potential of 0.79 V (vs. RHE), half-wave potential of 0.59 V and limiting current density of 5.43 mA/cm~2, which was comparable to the commercial Pt/C catalyst (0.86 V, 0.60 V and 4.76 mA/cm~2). The high activity of Con.g-N-OMC catalyst was attributed to the high active surface area, higher total nitrogen amount, and higher relative distribution of graphitic nitrogen and pyrrolic nitrogen species. Furthermore, single chamber microbial fuel cell (SCMFC) with Coo.s-N-OMC cathode exhibited the highest power density of 389 ± 24 mW/m~2, chemical oxygen demand (COD) removal of 81.1 ± 2.2% and coulombic efficiency (CE) of 17.2 ± 2.5%. On the other hand, in the Co_(1.0)-N-OMC catalyst, increasing the cobalt dosage from 0.8 to 1.0 g resulted in more oxidized-N species, and the reduced power generation in SCMFC (360 ± 8 mW/m~2). The power generated by these catalysts and results of electrochemical evaluation were strongly correlated with the total nitrogen contents on the catalyst surface. This study demonstrated the feasibility of optimizing the dosage of metal to enhance wastewater treatment capacity.
机译:阴极上的缓慢氧还原反应(ORR)严重限制了微生物燃料电池(MFC)的能量转换效率。在该研究中,通过热处理硝酸钴,三聚氰胺和有序的介孔碳(OMC)的混合物来制备钴和氮气共掺杂的介孔碳(CO_X-N-OMC)。与氮掺杂的OMC催化剂相比,加入硝酸钴显着提高了ORR反应性。通过优化硝酸钴的剂量(x = 0.6,0.8和1.0g),Coo.Sn-OMC催化剂在中性介质中显示出优异的ORR催化性能,其发作潜力为0.79V(与RHE),半波电位0.59 V并限制电流密度为5.43mA / cm〜2,其与商业Pt / C催化剂相当(0.86V,0.60V和4.76mA / cm〜2)。 CON.G-N-OMC催化剂的高活性归因于高活性表面积,较高的总氮量,较高的石墨氮和吡咯氮物质的相对分布。此外,具有CoO.SN-OMC阴极的单室微生物燃料电池(SCMFC)表现出389±24mW / m〜2的最高功率密度,化学需氧量(COD)去除81.1±2.2%和库仑效率(CE) 17.2±2.5%。另一方面,在CO_(1.0)-N-OMC催化剂中,将钴剂量从0.8〜1.0g增加,导致更氧化-N物种,SCMFC中的发电量减少(360±8 MW / m〜2 )。由这些催化剂产生的功率和电化学评价结果与催化剂表面上的总氮含量强烈相关。本研究表明,优化金属剂量以提高废水处理能力的可行性。

著录项

  • 来源
    《Environmental research》 |2020年第12期|110195.1-110195.12|共12页
  • 作者单位

    Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China;

    Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China;

    Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China;

    Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China;

    Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ordered mesoporous carbon; Cobalt; Nitrogen; Oxygen reduction reaction; Microbial fuel cell;

    机译:订购的中孔碳;钴;氮;氧还原反应;微生物燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号