首页> 外文OA文献 >Geometry of unsteady fluid transport during fluid–structure interactions
【2h】

Geometry of unsteady fluid transport during fluid–structure interactions

机译:流体与结构相互作用过程中不稳定流体的几何形状

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe the application of tools from dynamical systems to define and quantify the unsteady fluid transport that occurs during fluid–structure interactions and in unsteady recirculating flows. The properties of Lagrangian coherent structures (LCS) are used to enable analysis of flows with arbitrary time-dependence, thereby extending previous analytical results for steady and time-periodic flows. The LCS kinematics are used to formulate a unique, physically motivated definition for fluid exchange surfaces and transport lobes in the flow. The methods are applied to numerical simulations of two-dimensional flow past a circular cylinder at a Reynolds number of 200; and to measurements of a freely swimming organism, the Aurelia aurita jellyfish. The former flow provides a canonical system in which to compare the present geometrical analysis with classical, Eulerian (e.g. vortex shedding) perspectives of fluid–structure interactions. The latter flow is used to deduce the physical coupling that exists between mass and momentum transport during self-propulsion. In both cases, the present methods reveal a well-defined, unsteady recirculation zone that is not apparent in the corresponding velocity or vorticity fields. Transport rates between the ambient flow and the recirculation zone are computed for both flows. Comparison of fluid transport geometry for the cylinder crossflow and the self-propelled swimmer within the context of existing theory for two-dimensional lobe dynamics enables qualitative localization of flow three-dimensionality based on the planar measurements. Benefits and limitations of the implemented methods are discussed, and some potential applications for flow control, unsteady propulsion, and biological fluid dynamics are proposed.
机译:我们描述了动力系统中工具的应用,以定义和量化在流体-结构相互作用以及不稳定循环流中发生的不稳定流体传输。拉格朗日相干结构(LCS)的属性用于对具有任意时间依赖性的流进行分析,从而扩展了先前对稳定流和时间周期流的分析结果。 LCS运动学用于为流体交换表面和流动中的波瓣制定独特的,基于物理动机的定义。该方法适用于二维流过圆柱的雷诺数为200的数值模拟。并测量自由游泳的生物,即Aurelia aurita水母。前一个流程提供了一个规范的系统,可以在其中将当前的几何分析与流体结构相互作用的经典欧拉(例如,涡旋脱落)观点进行比较。后者的流量用来推论自推进过程中存在于质量和动量传输之间的物理耦合。在这两种情况下,本发明方法都揭示了一个明确的,不稳定的再循环区域,该区域在相应的速度场或涡度场中并不明显。计算两种流在环境流和再循环区之间的传输速率。在现有的二维波瓣动力学理论的背景下,对气缸横流和自推进游泳者的流体传输几何形状进行比较,可以基于平面测量对流三维进行定性定位。讨论了所实施方法的优点和局限性,并提出了流量控制,非稳态推进和生物流体动力学的一些潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号