首页> 外文OA文献 >Hollow Fiber Porous Nanocomposite Membranes Produced via Continuous Extrusion: Morphology and Gas Transport Properties
【2h】

Hollow Fiber Porous Nanocomposite Membranes Produced via Continuous Extrusion: Morphology and Gas Transport Properties

机译:通过连续挤出产生的中空纤维多孔纳米复合材料:形态和气体运输性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, hollow fiber porous nanocomposite membranes were successfully prepared by the incorporation of a porous nanoparticle (zeolite 5A) into a blend of linear low-density polyethylene (LLDPE)/low-density polyethylene (LDPE) combined with azodicarbonamide as a chemical blowing agent (CBA). Processing was performed via continuous extrusion using a twin-screw extruder coupled with a calendaring system. The process was firstly optimized in terms of extrusion and post-extrusion conditions, as well as formulation to obtain a good cellular structure (uniform cell size distribution and high cell density). Scanning electron microscopy (SEM) was used to determine the cellular structure as well as nanoparticle dispersion. Then, the samples were characterized in terms of mechanical and thermal stability via tensile tests and thermogravimetric analysis (TGA), as well as differential scanning calorimetry (DSC). The results showed that the zeolite nanoparticles were able to act as effective nucleating agents during the foaming process. However, the optimum nanoparticle content was strongly related to the foaming conditions. Finally, the membrane separation performances were investigated for different gases (CO2, CH4, N2, O2, and H2) showing that the incorporation of porous zeolite significantly improved the gas transport properties of semi-crystalline polyolefin membranes due to lower cell wall thickness (controlling permeability) and improved separation properties (controlling selectivity). These results show that mixed matrix membranes (MMMs) can be cost-effective, easy to process, and efficient in terms of processing rate, especially for the petroleum industry where H2/CH4 and H2/N2 separation/purification are important for hydrogen recovery.
机译:在这项工作中,通过将多孔纳米颗粒(沸石5a)掺入线性低密度聚乙烯(LLDPE)/低密度聚乙烯(LDPE)的混合物中成功制备了中空纤维多孔纳米复合材料膜作为化学吹入的氮杂吡喃酰胺代理人(CBA)。通过使用与日历系统连接的双螺杆挤出机连续挤出进行处理。首先在挤出和后挤出条件下优化该方法,以及制剂以获得良好的细胞结构(均匀的细胞尺寸分布和高细胞密度)。扫描电子显微镜(SEM)用于确定细胞结构以及纳米粒子分散体。然后,通过拉伸试验和热重分析(TGA)以及差示扫描量热法(DSC),以机械和热稳定性表征样品。结果表明,沸石纳米颗粒能够在发泡过程中充当有效的成核剂。然而,最佳的纳米颗粒含量与发泡条件强烈相关。最后,研究了不同气体(CO 2,CH 4,N 2,O 2和H 2)的膜分离性能,表明多孔沸石的掺入由于较低的细胞壁厚度(控制)显着改善了半结晶聚烯烃膜的气体传输性能(控制渗透率)和改进的分离性能(控制选择性)。这些结果表明,混合基质膜(MMMS)可以具有成本效益,易于处理,并且在加工速率方面有效,特别是对于H2 / CH4和H2 / N2分离/纯化对于氢恢复是重要的。

著录项

  • 作者

    Zahir Razzaz; Denis Rodrigue;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号