首页> 外文OA文献 >Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm
【2h】

Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm

机译:使用实际编码遗传算法识别小规模压缩空气能量存储系统的优化参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressed-Air energy storage (CAES) is a well-established technology for storing the excess of electricity produced by and available on the power grid during off-peak hours. A drawback of the existing technique relates to the need to burn some fuel in the discharge phase. Sometimes, the design parameters used for the simulation of the new technique are randomly chosen, making their actual construction difficult or impossible. That is why, in this paper, a small-scale CAES without fossil fuel is proposed, analyzed, and optimized to identify the set of its optimal design parameters maximizing its performances. The performance of the system is investigated by global exergy efficiency obtained from energy and exergy analyses methods and used as an objective function for the optimization process. A modified Real Coded Genetic Algorithm (RCGA) is used to maximize the global exergy efficiency depending on thirteen design parameters. The results of the optimization indicate that corresponding to the optimum operating point, the consumed compressor electric energy is 103.83 kWh and the electric energy output is 25.82 kWh for the system charging and discharging times of about 8.7 and 2 h, respectively. To this same optimum operating point, a global exergy efficiency of 24.87% is achieved. Moreover, if the heat removed during the compression phase is accounted for in system efficiency evaluation based on the First Law of Thermodynamics, an optimal round-trip efficiency of 79.07% can be achieved. By systematically analyzing the variation of all design parameters during evolution in the optimization process, we conclude that the pneumatic motor mass flow rate can be set as constant and equal to its smallest possible value. Finally, a sensitivity analysis performed with the remaining parameters for the change in the global exergy efficiency shows the impact of each of these parameters.
机译:压缩空气能量存储(CAES)可以在非高峰小时存储由过量和可用在电力网所产生的电力的一个成熟的技术。现有技术的缺点涉及需要刻录一些燃料在放电阶段。有时,用于新技术的仿真的设计参数是随机选择的,使得他们的实际施工困难或不可能。这就是为什么,在本文中,没有化石燃料的小型CAES提出,分析和优化,以确定最大限度地发挥其性能设定了优化设计参数。该系统的性能是通过从能量和有效能分析方法得到并用作用于优化过程的目标函数全球火用效率的影响。使用修改后的真实编码遗传算法(RCGA)最大化取决于13个地设计参数,全球火用效率。优化的结果表明,对应于该最佳工作点,所消耗的压缩机的电能是103.83度和电能输出为25.82千瓦时为系统充电和放电分别为约8.7和2小时的时间,。为了这个相同的最佳工作点,24.87%的整体火用效率的实现。此外,如果在压缩阶段期间去除的热量在系统效率评价基于热力学第一定律占,79.07%的最佳往返效率得以实现。通过在优化过程中进化过程中系统分析所有设计参数的变化,我们得出这样的结论气动马达质量流量可以设置为常数,等于它的最小可能值。最后,灵敏度分析与在全球火用效率的变化剩余的参数进行显示每个这些参数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号