首页> 外文OA文献 >Intrachain exciton dynamics in conjugated polymer chains in solution
【2h】

Intrachain exciton dynamics in conjugated polymer chains in solution

机译:在溶液中共轭聚合物链内的内夹激子动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations—that are low-frequency—is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton’s temporary occupation of a LEGS—and particularly a quasi-band QEES—its motion is semi-ballistic with a large group velocity. After a short period of rapid transport, the exciton wavefunction collapses again into an exciton-polaron state. We present a simple model for the activated dynamics which is in agreement with the data.
机译:我们在单体的褐色旋转运动诱导的溶液中调查Exciton动力学。选择聚(对亚苯基)作为模型系统,激子通过Frenkel Exciton Hamiltonian建模。扭转模式的棕色波动通过Langevin方程进行了建模。在溶液中聚合物链中的单体在溶液中的旋转具有许多对激发状态性质的重要后果。首先,二面角的角度假设热平衡,导致Frenkel Hamiltonian中的对角线紊乱。该疾病安德森本地化了Frenkel Exciton中心的波峰,进入超级局部的当地激子地区(腿)和更高的能量更加划分的准扩展激子状态(QEESS)。腿对应于聚合物链上的发色团。旋转的第二个后果 - 低频 - 是它们与激子波飞光的耦合导致局部平坦化和卓越的聚极子的形成。这种扭转放松会导致额外的自我定位。最后,至关重要的是,扭转动态导致Frenkel Hamiltonian正在进行时间,导致激子动态。我们确定两个不同类型的动态。在低温下,扭转波动作为激子状态的极性性质的扰动。因此,低温下的Exciton动态是Exciton-PolarOn整体的小位移扩散绝热运动。扩散常数的温度依赖性具有线性依赖性,表明活化过程。然而,随着温度的增加,扩散常数以比线性速率的快速增加,表示第二非绝热动力学机制开始占据主导地位。激活激活激活激活到更高的能量,更划分的激子态(即腿和伤口)。这些国家不是通过当地扭转平面化自我定位的。在Exciton的临时占领腿期间 - 特别是Quasi-Band Qees - 其运动是具有大的群体速度的半弹性。在短时间内快速运输之后,激发器波失效再次坍塌到Exciton-PolarOn状态中。我们为激活的动态提供了一个简单的模型,它与数据一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号