首页> 外文OA文献 >Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol
【2h】

Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

机译:使用Swiss_4S协议以14C为基础的气溶胶中有机碳和元素碳源分配的准确性和精密度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Aerosol source apportionment remains a critical challenge for understandingthe transport and aging of aerosols, as well as for developing successfulair pollution mitigation strategies. The contributions of fossil andnon-fossil sources to organic carbon (OC) and elemental carbon (EC) incarbonaceous aerosols can be quantified by measuring the radiocarbon(C) content of each carbon fraction. However, the use of C instudying OC and EC has been limited by technical challenges related to thephysical separation of the two fractions and small sample sizes. There is nocommon procedure for OC/EC C analysis, and uncertainty studies havelargely focused on the precision of yields. Here, we quantified theuncertainty in C measurement of aerosols associated with theisolation and analysis of each carbon fraction with the Swiss_4S thermal–optical analysis (TOA) protocol. We used an OC/EC analyzer(Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate thetwo components. Each fraction was thermally desorbed and converted to carbondioxide (CO) in pure oxygen (O). On average, 91 % of theevolving CO was then cryogenically trapped on the vacuum line, reducedto filamentous graphite, and measured for its C content viaaccelerator mass spectrometry (AMS). To test the accuracy of our setup, wequantified the total amount of extraneous carbon introduced during the TOAsample processing and graphitization as the sum of modern and fossil(C-depleted) carbon introduced during the analysis of fossilreference materials (adipic acid for OC and coal for EC) and contemporarystandards (oxalic acid for OC and rice char for EC) as a function of samplesize. We further tested our methodology by analyzing five ambient airborneparticulate matter (PM) samples with a range of OC and ECconcentrations and C contents in an interlaboratory comparison. Thetotal modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively, based onmultiple measurements of ultra-small samples. The extraction procedure(Swiss_4S protocol and cryo-trapping only) contributed 0.37 ± 0.18 μg of modern carbon and 0.13 ± 0.07 μg offossil carbon to the total blank of our system, with consistent estimatesobtained for the two laboratories. There was no difference in the backgroundcorrection between the OC and EC fractions. Our setup allowed us toefficiently isolate and trap each carbon fraction with theSwiss_4S protocol and to perform C analysis ofultra-small OC and EC samples with high accuracy and low C blanks.
机译:气溶胶源分配对于理解气溶胶的运输和老化以及制定成功的空气污染缓解策略仍然是一个关键挑战。化石和非化石源对碳质气溶胶中有机碳(OC)和元素碳(EC)的贡献可以通过测量每个碳部分的放射性碳(C)含量来量化。但是,C代表OC和EC的使用受到与两个馏分的物理分离和小样本量相关的技术挑战的限制。 OC / EC C分析没有通用的程序,不确定性研究主要集中在产量的精度上。在这里,我们用Swiss_4S热光分析(TOA)协议量化了与隔离和分析每个碳组分相关的气溶胶C测量的不确定性。我们使用了连接到真空管线的OC / EC分析仪(美国俄勒冈州日落实验室公司)来分离这两个组件。将每个馏分热脱附,并在纯氧(O)中转化为二氧化碳(CO)。平均而言,随后将91%的正在生成的CO低温捕获在真空管线上,还原为丝状石墨,并通过加速器质谱(AMS)测量其C含量。为了测试我们设置的准确性,我们将TOA样品处理和石墨化过程中引入的外来碳总量量化为化石参考物质(己二酸用于OC和煤用于分析)中引入的现代碳和化石(贫C)碳的总和。 EC)和当代标准(OC的草酸和EC的大米炭)作为样本大小的函数。我们通过在实验室间比较中分析了五种具有一定范围的OC和EC浓度以及C含量的空气中悬浮颗粒物(PM)样品,进一步测试了我们的方法。基于对超小型样品的多次测量,我们设置的现代和化石碳空白总量分别为0.8±0.4和0.67±0.34μgC。萃取程序(仅使用Swiss_4S协议和低温捕集)为我们系统的总空白贡献了0.37±0.18μg的现代碳和0.13±0.07μg的硅碳,这两个实验室均获得了一致的估计值。 OC和EC馏分之间的背景校正没有差异。我们的设置使我们能够利用swiss_4S协议高效地分离和捕获每个碳馏分,并以高精度和低C空白率对超小型OC和EC样品进行C分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号