首页> 外文期刊>Atmospheric Measurement Techniques >Accuracy and precision of C-14-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol
【24h】

Accuracy and precision of C-14-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

机译:使用Swiss_4S协议基于C-14的气溶胶中有机碳和元素碳的源分配的精度和精确度

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (C-14) content of each carbon fraction. However, the use of C-14 in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC C-14 analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in C-14 measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally descubed and converted to carbon dioxide (CO2) in pure oxygen (O-2). On average, 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its C-14 content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (C-14-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and C-14 contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 +/- 0.4 and 0.67 +/- 0.34 mu g C, respectively, based on multiple measurements of ultra-small samples. The extraction procedure (Swiss 4S protocol and cryo-trapping only) contributed 0.37 +/- 0.18 jug of modern carbon and 0.13 0.07 jug of fossil carbon to the total blank of our system, with consistent estimates obtained for the two laboratories. There was no difference in the background correction between the OC and EC fractions. Our setup allowed us to efficiently isolate and trap each carbon fraction with the Swiss_4S protocol and to perform C-14 analysis of ultra-small OC and EC samples with high accuracy and low MC blanks
机译:气溶胶源分配对于理解气溶胶的运输和老化以及制定成功的缓解空气污染的策略仍然是一个严峻的挑战。化石和非化石源对碳质气溶胶中有机碳(OC)和元素碳(EC)的贡献可以通过测量每个碳部分的放射性碳(C-14)含量来量化。但是,C-14在研究OC和EC中的使用受到与两部分的物理分离和小样本量相关的技术挑战的限制。 OC / EC C-14分析没有通用的程序,不确定性研究主要集中在产量的准确性上。在这里,我们量化了用Swiss_4S热光学分析(TOA)协议对每个碳组分的分离和分析相关的气溶胶C-14测量的不确定性。我们使用了一个OC / EC分析仪(美国俄勒冈州,Sunset Laboratory Inc.),并将其连接到真空管线上以分离这两个组件。将每个馏分热脱脂,并在纯氧(O-2)中转化为二氧化碳(CO2)。平均而言,随后将91%的不断散发的CO2低温捕获在真空管线上,还原成丝状石墨,并通过加速器质谱(AMS)测量其C-14含量。为了测试设置的准确性,我们将TOA样品处理和石墨化过程中引入的外部碳总量量化为化石参考材料(己二酸)分析过程中引入的现代碳和化石(C-14贫化)碳的总和。 OC和煤炭用于EC)和当代标准(OC的草酸和EC的大米炭)作为样本量的函数。我们通过在实验室间比较中分析了五种具有一定范围的OC和EC浓度以及C-14含量的空气中颗粒物(PM2.5)样品,进一步测试了我们的方法。基于对超小型样品的多次测量,我们设置的现代和化石碳空白总量分别为0.8 +/- 0.4和0.67 +/- 0.34μgC。萃取程序(仅适用于瑞士4S方案和低温捕集)为我们系统的总空白贡献了0.37 +/- 0.18壶的现代碳和0.13 0.07壶的化石碳,这两个实验室的估算值一致。 OC和EC馏分之间的背景校正没有差异。我们的设置使我们能够通过Swiss_4S协议有效地分离和捕获每个碳馏分,并以高精度和低MC空白对超小型OC和EC样品进行C-14分析

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号