首页> 外文OA文献 >Contributions of TRPM4 and Rho Kinase to Myogenic Tone Development in Cerebral Parenchymal Arterioles
【2h】

Contributions of TRPM4 and Rho Kinase to Myogenic Tone Development in Cerebral Parenchymal Arterioles

机译:TRPM4和Rho激酶对脑实质小动脉肌音发展的贡献。

摘要

Cerebral parenchymal arterioles (PAs) play a critical role in assuring appropriate blood flow and perfusion pressure within the brain. PAs are unique in contrast to upstream pial arteries, as defined by their critical roles in neurovascular coupling, distinct sensitivities to vasoconstrictors, and enhanced myogenic responsiveness. Dysfunction of these blood vessels is implicated in numerous cardiovascular diseases. However, treatments are limited due to incomplete understanding of the fundamental control mechanisms at this level of the circulation. One of the key elements within most vascular networks, including the cerebral circulation, is the presence of myogenic tone, an intrinsic process whereby resistance arteries constrict and reduce their diameter in response to elevated arterial pressure. This process is centrally involved in the ability of the brain to maintain nearly constant blood flow over a broad range of systemic blood pressures. The overall goal of this dissertation was to investigate the unique mechanisms of myogenic tone regulation in the cerebral microcirculation. To reveal the contributions of various signaling factors in this process, measurements of diameter, intracellular Ca2+ concentration ([Ca2+]i), membrane potential and ion channel activity were performed. Initial work determined that two purinergic G protein-coupled receptors, P2Y4 and P2Y6 receptors, play a unique role in mediating pressure-induced vasoconstriction of PAs in a ligand-independent manner. Moreover, a particular transient receptor potential (TRP) channel in the melastatin subfamily, i.e. TRPM4, was also identified as a mediator of PA myogenic responses. Notably, the observations that inhibiting TRPM4 channels substantially reduces P2Y receptor-mediated depolarization and vasoconstriction, and that P2Y receptor ligands markedly activate TRPM4 currents provide definitive evidence that this ion channel functions as an important link between mechano-sensitive P2Y receptor activation and the myogenic response in PAs. Next, the signaling cascades that mediate stretch-induced TRPM4 activation in PA myocytes were explored. Interestingly, these experiments determined that the RhoA/Rho kinase signaling pathway is involved in this mechanism by facilitating pressure-induced, P2Y receptor-mediated stimulation of TRPM4 channels, leading to subsequent smooth muscle depolarization, [Ca2+]i increase and contraction. Since Rho kinase is generally accepted as a u27Ca2+-sensitizationu27 mediator, the present, contrasting observations point to an underappreciated role of RhoA/Rho kinase signaling in the excitation-contraction mechanisms within the cerebral microcirculation. Overall, this dissertation provides evidence that myogenic regulation of cerebral PAs is mediated by mechano-sensitive P2Y receptors, which initiate the RhoA/Rho kinase signaling pathway, subsequent TRPM4 channel opening, and concomitant depolarization and contraction of arteriolar smooth muscle cells. Revealing the unique mechanochemical coupling mechanisms in the cerebral microcirculation may lead to development of innovative therapeutic strategies for prevention and treatment of microvascular pathologies in the brain.
机译:脑实质小动脉(PAs)在确保脑内适当的血流量和灌注压力中起关键作用。与它们在神经血管耦合中的关键作用,对血管收缩剂的独特敏感性以及增强的肌源性反应能力所定义的PA相比,上游的动脉是独特的。这些血管的功能障碍与许多心血管疾病有关。但是,由于对这种循环水平的基本控制机制的不完全了解,治疗受到限制。包括脑循环在内的大多数血管网络中的关键要素之一是肌源性音调的存在,肌源性音调是内在过程,在此过程中,抵抗性动脉会因动脉压升高而收缩并减小其直径。这个过程主要涉及大脑在广泛的系统性血压范围内维持几乎恒定的血液流动的能力。本论文的总体目标是研究脑微循环中肌源性音调调节的独特机制。为了揭示该过程中各种信号传导因子的贡献,进行了直径,细胞内Ca2 +浓度([Ca2 +] i),膜电位和离子通道活性的测量。初步工作确定了两个嘌呤能G蛋白偶联受体P2Y4和P2Y6受体在以配体独立的方式介导PA的压力诱导的血管收缩中起独特作用。此外,还确定了褪黑素亚家族中的特定瞬时受体电位(TRP)通道,即TRPM4,是PA肌原性应答的介体。值得注意的是,抑制TRPM4通道可显着降低P2Y受体介导的去极化和血管收缩作用,并且P2Y受体配体显着激活TRPM4电流的观察结果提供了明确的证据,表明该离子通道是机械敏感的P2Y受体激活与肌源性反应之间的重要联系。在PA中。接下来,探索介导PA心肌细胞中拉伸诱导的TRPM4激活的信号级联反应。有趣的是,这些实验通过促进压力诱导的P2Y受体介导的TRPM4通道刺激,导致随后的平滑肌去极化,[Ca2 +] i增加和收缩,从而确定RhoA / Rho激酶信号通路参与了该机制。由于Rho激酶通常被认为是 u27Ca2 +-敏化介质,因此,目前的对比观察结果指出,RhoA / Rho激酶信号在脑微循环内的兴奋收缩机制中作用不足。总体而言,本论文提供了证据,证明了机械性P2Y受体介导了大脑PA的成肌调节,该受体启动了RhoA / Rho激酶信号传导途径,随后的TRPM4通道开放以及小动脉平滑肌细胞的去极化和收缩。揭示大脑微循环中独特的机械化学偶联机制可能导致预防和治疗大脑微血管病变的创新治疗策略的发展。

著录项

  • 作者

    Li Yao;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号