首页> 外文OA文献 >The fracture toughness of low carbon steels : the effects of grain size and temperature
【2h】

The fracture toughness of low carbon steels : the effects of grain size and temperature

机译:低碳钢的断裂韧性:晶粒尺寸和温度的影响

摘要

For materials that exhibit a fracture mode transition as temperature is lowered one of the important criteria for material performance is the material's fracture mode transition temperature and not necessarily the specific fracture toughness at any temperature. Therefore, it is important to establish whether operating conditions place a structure below the selected material's transition temperature or that a material is selected with a transition below that of the structure's operating conditions. Quantitative design processes, based on linear elastic (KIC) and elastic-plastic (CTOD) fracture mechanics using experimental fracture toughness data, allow the design of safer structures. In recent years standard procedures have been adopted for KIC and CTOD testing. Using the traditional Charpy V-notch impact test, detailed information on the effects of composition and grain size on the fracture mode transition temperature are known. The fracture mode transition temperature is not as equally well understood in CTOD or KIC testing, especially for low carbon steels. The CTOD and Charpy impact tests have been used to determine the grain size dependence of the fracture mode transition temperature for two low carbon (structural) steels, one of low active nitrogen content and one of high active nitrogen content. Both the CTOD and Charpy tests show a fracture mode transition over a narrow temperature range. It was established from theoretical derivation and experimental observation that there is a linear dependence of the transition temperature TC on the reciprocal square root of grain size (d-½) for both the CTOD and Charpy tests i.e. Tc = B₀ + B₁d-½ where B₀ and B₁ are constants. When the results of the CTOD and Charpy tests are compared the magnitude of B₁ is significantly different for each test. It was concluded that the difference in B₁ between the two tests is due to the different strain rates of the tests and that the strain rate significantly affects the local yield stress around the crack tip or notch. Micromechanical modelling of fracture toughness predicted a variation in transition temperature with variation of grain size but this did not show a linear dependence on d-½. The predicted transition temperature was a lower bound of the range in transition temperature. The observed decrease in transition temperature with grain refinement when using the CTOD test is explained by the increase in crack initiation and crack propagation energy necessary to overcome grain boundary resistance to fracture. For example, at the fracture mode transition temperature for the low nitrogen steel, the proportion of energy required to overcome grain boundary resistance to fracture increased from 39% at d-½ = 4.218 mm-½ to 55% at d-½ = 9.939 mm-½ of the total critical energy released. Also, it is thought that grain refinement means a lower critical crack-tip strain is needed for transition. Correlations between Charpy Impact Energy (Cv) and CTOD (δc) or KIC suggested a suitable relationship was δc (or KIC) = D(Cv)n. The constants D and n were independent of grain size but were composition dependent. The temperature shift showed a grain size dependence, given as ∆T = ∆B₀ + ∆B₁d-½ for the data available. The CTOD measured from Clip Gauge Displacement was determined to be grain size and composition dependent. From a technique using silicone-rubber replicas of the crack tip the CTOD was found to be a function clip gauge displacement (Vg) and grain size (d). namely, δt = 0.121113 Vg + 0.034222 Vg²d ½, for the compact tension specimens tested. For toughness calculations and determining the fracture mode transition the temperature and grain size dependence of the steels' yield stress (at constant strain rate) was determined. Using the Hall-Petch equation (σys = σi + kyd-½), a suitable model was found to be σys =A₁ + A₂T + A₃T² + A₄T³ + kyd-½ where the constants A₁, A₂, A₃, A₄ and ky were determined by multiple-linear regression analysis from experimental data over the temperature range -196 to +65°C.
机译:对于随温度降低而呈现断裂模式转变的材料,材料性能的重要标准之一是材料的断裂模式转变温度,而不一定是任何温度下的特定断裂韧性。因此,重要的是要确定操作条件是将结构置于所选材料的转变温度以下,还是所选材料的转变温度低于结构的操作条件。基于线性弹性(KIC)和弹塑性(CTOD)断裂力学的定量设计过程,使用实验性断裂韧性数据,可以设计出更安全的结构。近年来,已针对KIC和CTOD测试采用了标准程序。使用传统的夏比V型缺口冲击试验,有关成分和晶粒尺寸对断裂模式转变温度的影响的详细信息是已知的。在CTOD或KIC测试中,尤其是对于低碳钢,断裂模式转变温度没有得到同样好的理解。 CTOD和夏比冲击试验已用于确定两种低碳(结构)钢,一种低活性氮含量和一种高活性氮含量的断裂模式转变温度的晶粒尺寸依赖性。 CTOD和夏比测试均显示出在狭窄温度范围内的断裂模式转变。从理论推导和实验观察可以确定,对于CTOD和夏比试验,转变温度TC对晶粒尺寸的倒数平方根(d-1 / 2)具有线性关系,即Tc =B₀+B₁d-½,其中B₀和B₁是常数。当比较CTOD和夏比测试的结果时,每种测试的B₁值都明显不同。可以得出结论,两次测试之间的B₁差异是由于测试的应变率不同,并且应变率显着影响裂纹尖端或缺口附近的局部屈服应力。断裂韧度的微机械模型预测了转变温度随晶粒尺寸的变化,但这并没有显示出对d-1 / 2的线性依赖性。预测的转变温度是转变温度范围的下限。当使用CTOD测试时,观察到的随着晶粒细化的转变温度降低是由裂纹萌生和裂纹扩展能量的增加所克服的,而裂纹萌生和裂纹扩展能量是克服晶界抗断裂性所必需的。例如,在低氮钢的断裂模式转变温度下,克服晶界抗断裂性所需的能量比例从d-½= 4.218mm-½时的39%增加到d-½= 9.939 mm时的55%。释放的总临界能量的-½。另外,据认为晶粒细化意味着过渡需要较低的临界裂纹尖端应变。夏比冲击能(Cv)与CTOD(δc)或KIC之间的相关性表明,合适的关系为δc(或KIC)= D(Cv)n。常数D和n与晶粒尺寸无关,但是与成分有关。温度变化显示出晶粒尺寸依赖性,对于可用数据,给出为∆T = ∆B₀ + ∆B₁d-½。从夹子规位移测量的CTOD被确定为取决于晶粒尺寸和组成。从使用裂纹尖端的硅橡胶复制品的技术中,发现CTOD是夹钳位移(Vg)和晶粒尺寸(d)的函数。对于紧凑的受拉试样,δt= 0.121113 Vg + 0.034222Vg²d½。为了进行韧性计算和确定断裂模式转变,确定了温度和晶粒尺寸对钢屈服应力(在恒定应变速率下)的依赖性。使用霍尔-帕奇方程(σys=σi+ kyd-1 / 2),发现合适的模型为σys=A₁+ A2T +A₃T²+A₄T³+kyd-½,其中常数A₁,A2,A₃,A₄和ky被确定。通过对-196至+ 65°C温度范围内的实验数据进行多元线性回归分析。

著录项

  • 作者

    Tunnicliffe M. C.;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号