首页> 外文OA文献 >Stochastic multiphysics modeling of RF MEMS switches
【2h】

Stochastic multiphysics modeling of RF MEMS switches

机译:RF mEms开关的随机多物理场建模

摘要

Micro-Electro-Mechanical (MEM) devices like switches, varactors and oscillators have shown great potential for use in communication devices, sensors and actuators. Electrostatically actuated switches in particular have been shown to have superior performance characteristics over traditional semiconductor switches. However, their widespread insertion in integrated electronics is critically dependent on a thorough understanding of two broad issues - manufacturing process variations and failure mechanisms. Variations during fabrication lead to uncertain material and/or geometric parameters causing a significant impact on device performance. Such uncertainties need to be accounted for during the robust design of these switches. In terms of failure mechanisms limiting the lifetime of MEMS switches, dielectric charging is considered to be the most critical. It can cause the switch to either remain stuck after removal of the actuation voltage or to fail to contact under application of voltage. There is a need for accurate and computationally efficient, multi-physics CAD tools for incorporating the effect of dielectric charging. In this work, we have attempted to address some of the aforementioned challenges. We have come up with new algorithms for improving the effciency of coupled electro-mechanical simulations done in existing commercially available software like ANSYS. The gains in efficiency are accomplished through eliminating the need for repeated mesh update or re-meshing during finite element electrostatic modeling. This is achieved through the development of a `map' between the deformed and un-deformed geometries. Thus only one finite element discretization on the original undeformed geometry is needed for performing electrostatic analysis on all subsequent deformed geometries. We have generalized this concept of `mapping' to perform stochastic electrostatic analysis in the presence of geometric uncertainties. The different random realizations of geometry are considered as deformed geometries. The electrostatic problem on each of these random samples is then obtained using the `mapping' and the finite element simulation on the mean geometry. Statistics such as the mean and standard deviation of the desired system response such as capacitance and vertical force are efficiently computed. This approach has been shown to be orders of magnitude faster than standard Monte Carlo approaches. Next, we have developed a methodology for the model order reduction of MEMS devices under random input conditions to facilitate fast time and frequency domain analyses. In this approach, the system matrices are represented in terms of polynomial expansions of input random variables. The coefficients of these polynomials are obtained by deterministic model order reduction for specific values of the input random variables. These values are chosen `smartly' using a Smolyak algorithm. The stochastic reduced order model is cast in the form of an augmented, deterministic system. The proposed method provides significant efficiency over standard Monte Carlo.Finally, we have developed a physics based, one dimensional macroscopic model for the quantitative description of the process of dielectric charging. The fidelity of the model relies upon the utilization of experimentally-obtained data to assign values to model parameters that capture the non-linear behavior of the dielectric charging process. The proposed model can be easily cast in the form of a simple SPICE circuit. Its compact, physics-based form enables its seamless insertion in non-linear, SPICE-like, circuit simulators and makes it compatible with system-level MEMS computer-aided analysis and design tools. The model enables the efficient simulation of dielectric charging under different, complex control voltage waveforms. In addition, it provides the means for expedient simulation of the impact of dielectric charging on switch performance degradation. It is used to demonstrate failure of a switch in Architect. We conclude with a description of how this one dimensional model can be combined in a detailed two dimensional coupled electro-mechanical framework.
机译:诸如开关,变容二极管和振荡器之类的微机电(MEM)设备已显示出在通信设备,传感器和执行器中的巨大潜力。特别是,静电驱动开关已经显示出优于传统半导体开关的性能特征。然而,它们在集成电子产品中的广泛应用严重取决于对两个广泛问题的全面理解-制造工艺变化和故障机制。制造期间的变化导致不确定的材料和/或几何参数,从而对器件性能产生重大影响。在这些开关的稳健设计期间,必须考虑到此类不确定性。就限制MEMS开关寿命的故障机制而言,电介质充电被认为是最关键的。可能会导致开关在取消驱动电压后仍然保持卡住状态,或者在施加电压时无法接触。需要一种准确且计算有效的多物理场CAD工具,以结合介电电荷的影响。在这项工作中,我们试图解决上述一些挑战。我们提出了新的算法,以提高在现有的商用软件(如ANSYS)中完成的机电耦合仿真的效率。通过消除在有限元静电建模过程中重复进行网格更新或重新网格化的需要,可以实现效率的提高。这是通过在变形和未变形的几何图形之间建立“贴图”来实现的。因此,仅需对原始未变形几何进行一次有限元离散化,即可对所有后续变形几何进行静电分析。我们已经概括了“映射”的概念,可以在存在几何不确定性的情况下执行随机静电分析。几何的不同随机实现被认为是变形的几何。然后,通过对平均几何图形进行“映射”和有限元模拟,获得每个随机样本的静电问题。可以有效地计算统计信息,例如所需系统响应的平均值和标准偏差,例如电容和垂直力。事实证明,这种方法比标准的蒙特卡洛方法快几个数量级。接下来,我们开发了一种方法,用于在随机输入条件下降低MEMS器件的模型阶数,以促进快速时域和频域分析。在这种方法中,系统矩阵用输入随机变量的多项式展开表示。这些多项式的系数是通过确定性模型降阶获得输入随机变量的特定值而获得的。使用Smolyak算法“智能”选择这些值。随机的降序模型以增强的确定性系统的形式进行转换。最后,我们开发了一种基于物理学的一维宏观模型来定量描述介电过程。模型的保真度依赖于利用实验获得的数据为模型参数分配值,该参数捕获介电充电过程的非线性行为。所提出的模型可以很容易地以简单的SPICE电路的形式进行浇铸。其紧凑的基于物理的形式使其能够无缝插入类似于SPICE的非线性电路仿真器中,并使其与系统级MEMS计算机辅助分析和设计工具兼容。该模型可以在不同,复杂的控制电压波形下有效地模拟介电电荷。此外,它还提供了一种方法,可以方便地模拟介电电荷对开关性能下降的影响。它用于演示Architect中交换机的故障。我们以一个一维模型如何在详细的二维耦合机电框架中进行组合的描述作为结束。

著录项

  • 作者

    Sumant Prasad S.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号