首页> 外文OA文献 >Modeling of the dynamics of autonomous catalytic nanomotors using the method of regularized stokeslets
【2h】

Modeling of the dynamics of autonomous catalytic nanomotors using the method of regularized stokeslets

机译:用正则化的stokeslet方法建立自主催化纳米级动力学模型

摘要

Catalytic nanomotors move autonomously by deriving energy directly from their environment, mimicking biological nanomotors that perform a wide range of complex functions at the cellular level and drive vital functions such as active transport, muscle contraction, cell mobility, and other movement. With the belief that precise control of microscale and nanoscale motors may eventually permit the design of functional machinery at these scales, researchers have been systematically designing such nanomotors and experimentally investigating their swimming behavior.The complex nature of fluid-structure interaction resulting from complicated surface geometry, the Brownian fluctuations and the contact surface effects, necessitate appropriate theoretical modeling and use of computational methods and tools to accurately simulate particle dynamics. The swimming behavior exhibited by catalytic nanomotors designed by our collaborators Gibbs and Zhao, is numerically simulated based on an accurate representation of the nanomotor geometry, full hydrodynamic interactions of the nanomotor components as well as with the supporting substrate, accurately captured by the method of Regularized Stokeslets. We also account for solid-frictional forces and torques from the substrate, as prescribed by an established velocity-dependent friction model for micro/nanoscale friction. To explain random deviations, the Brownian fluctuations are precisely modeled as the stochastic solution to a Langevin Equation satisfying the fluctuation-dissipation theorem of statistical mechanics. A comparison of our numerically simulated results with the experimental observations is also presented here.
机译:催化纳米马达通过直接从其环境中获取能量来自主移动,模仿生物纳米马达在细胞水平上执行多种复杂功能,并驱动重要功能,例如主动转运,肌肉收缩,细胞运动和其他运动。相信对微型和纳米级电动机的精确控制最终可能会允许在这些规模上设计功能机械,因此研究人员已经系统地设计了此类纳米电动机并通过实验研究了它们的游泳行为。复杂的表面几何结构导致流体-结构相互作用的复杂性,布朗波动和接触表面效应,需要进行适当的理论建模,并使用计算方法和工具来精确地模拟粒子动力学。由我们的合作者Gibbs和Zhao设计的催化纳米马达表现出的游泳行为是基于对纳米马达几何形状的精确表示,纳米马达组件以及与支撑基材的完全流体动力学相互作用的数值模拟,并通过正则化方法精确捕获。 Stokeslets。我们还考虑了由基体产生的固体摩擦力和扭矩,这是由已建立的与速度相关的微米/纳米级摩擦模型决定的。为了解释随机偏差,将布朗波动精确建模为满足统计力学波动耗散定理的朗文方程的随机解。这里还提供了我们的数值模拟结果与实验观察结果的比较。

著录项

  • 作者

    Kothari Shrenik;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号