首页> 外文OA文献 >Nanomechanical and nanoelectromechanical phenomena in 2D-atomic crystals:a scanning probe microscopy approach
【2h】

Nanomechanical and nanoelectromechanical phenomena in 2D-atomic crystals:a scanning probe microscopy approach

机译:二维原子晶体中的纳米力学和纳米机电现象:扫描探针显微镜方法

摘要

In this thesis we probe the morphological, nanomechanical and nanoelectromechanical properties of 2D materials: graphene, MoS2 and h-BN. Throughout this study we extensively use scanning probe techniques of ultrasonic force microscopy (UFM), direct-contact electrostatic force microscopy (DC-EFM) and heterodyne force microscopy (HFM). With the use of these techniques we report the observation of the nanoscale Moir`e pattern when graphene is aligned on h-BN and we propose that the imaging with atomic force microscopy of such a sample is partly due to the variance in both sample adhesion and mechanical stiffness. In addition to this we probe the ability for UFM to detect the subsurface mechanical properties in 2D materials and confirm that the anisotropy present effectively enhances its ability to do so. We apply this knowledge of UFM and 2D materials to detect the decoupling of graphene, grown on 4H-SiC, from the substrate through the intercalation with hydrogen. In the final part of this thesis we discuss the electromechanical phenomena observable in 2D materials and related devices. Through the electrostatic actuation of graphene resonator type devices we are able to probe the electrostatic environment beneath the graphene layer, information that is unavailable to non-contact mode techniques. We then develop this method of DC-EFM to incorporate a sensitivity to the time-dependent properties by introducing the heterodyne mixing principle. This new technique developed, called electrostatic heterodyne force microscopy (E-HFM) is sensitive in the nano-second time domain whilst maintaining the nanoscale lateral and vertical resolution typical of an atomic force microscope. We propose that E-HFM will prove to be a valuable tool in characterising the behaviour of high-frequency small-scale nano electromechanical systems (NEMS) currently beyond the reach of conventional characterisation techniques. Finally we pave the way forward to future NEMS and demonstrate some of the steps taken towards progress in the field.
机译:在本文中,我们探讨了石墨烯,MoS2和h-BN二维材料的形貌,纳米力学和纳米机电特性。在整个研究过程中,我们广泛使用超声波力显微镜(UFM),直接接触静电力显微镜(DC-EFM)和外差力显微镜(HFM)的扫描探针技术。通过使用这些技术,我们报告了当石墨烯在h-BN上对齐时观察到的纳米莫尔图案的观察结果,并且我们建议使用原子力显微镜对这种样品进行成像的部分原因是样品粘附力和机械刚度。除此之外,我们还探讨了UFM检测2D材料中地下机械性能的能力,并确认存在的各向异性有效地增强了其这样做的能力。我们利用UFM和2D材料的知识,检测通过在氢中嵌入而在4H-SiC上生长的石墨烯与衬底的解耦。在本文的最后部分,我们讨论了在二维材料和相关设备中可观察到的机电现象。通过石墨烯谐振器类型设备的静电驱动,我们能够探测石墨烯层下方的静电环境,这是非接触模式技术无法获得的信息。然后,我们通过引入外差混合原理,开发出这种DC-EFM方法,以结合对随时间变化的特性的敏感性。这项称为静电外差力显微镜(E-HFM)的新技术在纳秒级时域内敏感,同时保持了原子力显微镜典型的纳米级横向和纵向分辨率。我们认为,E-HFM将被证明是表征当前超出常规表征技术范围的高频小规模纳米机电系统(NEMS)行为的有价值的工具。最后,我们为未来的NEMS铺平了道路,并展示了在该领域取得进展的一些步骤。

著录项

  • 作者

    Kay Nicholas;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号