首页> 外文OA文献 >Earth's outer electron radiation belt:sources, losses and predictions
【2h】

Earth's outer electron radiation belt:sources, losses and predictions

机译:地球的外部电子辐射带:来源,损失和预测

摘要

The outer electron radiation belt is highly dynamic in space and time. Understanding the mechanisms that drive these variations is of high interest to the scientific community because of the negative effects that the radiation belt can have on satellite instrumentation. Evidence in support of a wide range of processes has been uncovered, yet a complete understanding of the relative contribution of each processes, and how these contributions vary over time, is yet to be fully determined. The first body of research (Chapter 4) follows the evolution of the electron radiation belt at geosynchronous orbit through three high-speed solar wind stream induced dropouts. Electron flux, magnetic field, and phase space density results from GOES-13 indicate that outwards adiabatic transport plays a key role in causing radiation belt flux dropouts at GEO. This leads to enhanced magnetopause losses and subsequent outwards radial diffusion. Other loss processes may also play a role. In the second body of research (Chapter 5), the partial moments (electron number density, temperature and energy density) from GOES-13 are compared to different solar wind parameters, both instantaneous and time delayed, in order to develop a coarse predictive capability. Using these partial moments allows for changes in the number of electrons and the temperature of the electrons to be distinguished, which is not possible with the particle flux output from individual instrument channels. It is found that using solely the solar wind velocity as a driver results in predicted values that accurately follow the general trend of the observed moments. Given that electron number density and temperature are the fundamental physical parameters of a plasma, the result is a testable model that addresses elementary plasma properties. Hence, for a Maxwellian plasma, it is possible to infer the flux at any energy, not just energy channels tied to a particular instrument. In the final research study (Chapter 6), the validity of using the cold plasma dispersion relation to infer the magnetic field wave power from the measured wave electric field is tested using Van Allen Probes EMFISIS observations in the chorus wave band (0.1-0.9 fce). Results from this study indicate that for observed wave intensities > 10-3 nT2, using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater, 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence during active periods, empirical wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.
机译:外部电子辐射带在空间和时间上是高度动态的。由于辐射带可能对卫星仪器产生负面影响,因此了解引起这些变化的机制在科学界引起了极大的兴趣。已经找到了支持广泛过程的证据,但是,尚未完全确定对每个过程的相对贡献以及这些贡献如何随时间变化的完整理解。研究的第一部分(第4章)是通过三个高速太阳风流引起的漏失,在地球同步轨道上电子辐射带的演变。 GOES-13的电子通量,磁场和相空间密度结果表明,绝热输运在引起GEO辐射带通量下降方面起着关键作用。这导致增加的更年期损失和随后的向外径向扩散。其他损失过程也可能起作用。在第二部分研究中(第5章),将GOES-13的部分矩(电子数密度,温度和能量密度)与不同的太阳风参数(瞬时和时间延迟)进行了比较,以建立粗略的预测能力。通过使用这些局部力矩,可以区分电子数量和电子温度的变化,这对于从各个仪器通道输出的粒子通量是不可能的。发现仅将太阳风速用作驱动器会导致预测值准确地遵循所观测力矩的总体趋势。假定电子数密度和温度是等离子体的基本物理参数,则结果是一个可测试的模型,可处理基本的等离子体特性。因此,对于麦克斯韦等离子体,可以推断任何能量下的通量,而不仅仅是与特定仪器相连的能量通道。在最终研究(第6章)中,使用Van Allen Probes EMFISIS观测仪在合唱波段(0.1-0.9 fce)中测试了使用冷等离子体弥散关系从被测波电场中推断出磁场波功率的有效性。 )。这项研究的结果表明,对于大于10-3 nT2的观察到的波强度,使用冷等离子体弥散关系会导致在整个合唱波段上将波强度低估2倍或更多倍,即56%的时间,较低频段合唱的时间占60%,较高频段合唱的时间占59%。因此,在活跃时期,依赖于冷等离子体弥散关系的经验波模型将在很大程度上低估合唱波的强度,从而引起对MeV电子的波粒共振效应的计算有疑问。

著录项

  • 作者

    Hartley Dave;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号