首页> 外文OA文献 >Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system.
【2h】

Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system.

机译:模拟火山系统中压力振荡和流动形式的实验观察。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional “no-slip” boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity.
机译:气液流的设计类似于火山管道中的气液流,是在实验室中使用在垂直安装的管中膨胀的有机气-胶松香混合物产生的。膨胀流体显示出一定范围的流动和压力振荡行为。过饱和的弱液体会产生低的雷诺数流量,泡沫会从液体的上表面开始膨胀,在管壁处的流速为零。即常规的“防滑”边界条件。在这些流体中检测到压力振荡,通常具有很强的长期特性,并且与纵向和径向共振振荡模式一致。高度过饱和的源液体会产生更多的高能流,显示出多种流态。这些方案包括静态液体源,粘性流,分离流(包括壁上的气穴和气体泡沫环形流,因此表现出很强的径向异质性)以及完全湍流的跨音速破碎或雾流。这些流动状态中的每一个都显示出特征性的压力波动,该压力波动可能与流动特征的共振或壁撞击现象有关。压力振荡是通过除气过程产生的,不需要弹性耦合到限制介质或限流器和阀状特征。将实验流的振荡行为与来自一系列火山的地震声数据进行了比较,在这些地震中,管道内流体的共振通常也被调用来控制观测到的振荡频率。根据实验数据,我们假设在大规模爆炸活动中可以测量的地震信号的性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号