首页> 美国政府科技报告 >Representations and Integrability of Mathematical Structures in Energy-ConservingPhysical Systems
【24h】

Representations and Integrability of Mathematical Structures in Energy-ConservingPhysical Systems

机译:能量守恒物理系统中数学结构的表示和可积性

获取原文

摘要

In this paper, the authors elaborate on the underlying Hamiltonian structure ofinterconnected energy-conserving physical systems. It is shown that a power-conserving interconnection of port-controlled generalized Hamiltonian systems leads to an implicit generalized Hamiltonian system, and a power-conserving partial interconnection to an implicit port-controlled Hamiltonian system. The crucial concept is the notion of a (generalized) Dirac structure, defined on the space of energy-variables or on the product of the space of energy-variables and the space of flow-variables in the port-controlled case. Three natural representations of a generalized Dirac structures are treated. Necessary and sufficient conditions for closedness (or integrability) of Dirac structures in all three representations are obtained. The theory is applied to implicit port-controlled generalized Hamiltonian systems, and it is shown that the closedness condition for the Dirac structure leads to strong conditions on the input vector fields.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号