首页> 美国政府科技报告 >Model for Deep Catalytic Oxidation of Hydrocarbon Mixtures in the Strong Pore Diffusion Region
【24h】

Model for Deep Catalytic Oxidation of Hydrocarbon Mixtures in the Strong Pore Diffusion Region

机译:强孔扩散区烃类混合物深度催化氧化模型

获取原文

摘要

The paper describes a model for deep catalytic oxidation of hydrocarbon mixtures in the strong pore diffusion region. A laboratory-scale tubular catalytic reactor, used for low-temperature (160-360 C) deep catalytic oxidation of n-hexane and benzene as single components and in a binary mixture, was modeled both with and without internal (pore) diffusion effects. Experimental conversion data for a 0.1% Pt, 3% Ni/gamma-A12O3 catalyst, using 120 x 170 mesh particles, were compared to model predictions. Both models provided similar predictions of the single component results indicating the absence of pore diffusion effects in the 120 x 170 mesh particles. Benzene oxidation in the binary mixture was somewhat overpredicted throughout the temperature range, indicating the need for a more rigorous kinetic mechanism. Single component n-hexane oxidation was overpredicted above 260 C, presumably due to external diffusion effects in the laboratory reactor.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号