首页> 美国政府科技报告 >A Numerical Study of a Three Dimensional Spherical Thermospheric Density and Wind Model
【24h】

A Numerical Study of a Three Dimensional Spherical Thermospheric Density and Wind Model

机译:三维球形热密度与风模​​型的数值研究

获取原文

摘要

Numerical calculations of the generation and propagation of the two important fundamental symmetric tidal wave modes - the diurnal mode (1, 1, 1,) and the semidiurnal mode (2, 2, 2) - were performed applying a realistic model thermosphere and taking into account heat conduction and the temporally and spatially varying ion-neutral collision number. Both wave modes are predominantly generated by the solar EUV heat input. It is shown that the latitude structure of the (1, 1, 1)-mode which is identical with the Hough function(1, -1) within the lower non-dissipative atmosphere degenerates into the spherical function P sub 1, 1 at thermospheric heights. The pressure field of this mode constitutes the observed pressure bulge of the thermosphere, the diurnal component of which peaks at 15 h L. T. The electric polarization field of the geomagnetic Sq current generates a significant fraction of this wave mode at F layer heights. This wave component shifts the total horizontal wind system to earlier times by about 1 hour in agreement with ionospheric observations. The latitude structure of the (2, 2, 2) mode is identical with the Hough function (2, 2) within the lower non-dissipative atmosphere. It degenerates to the spherical function P sub 2, 2 at thermospheric heights. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号