首页> 外文会议>International Symposium on Advancing Geodesy in a Changing World >Calibration of Empirical Models of Thermospheric Density Using Satellite Laser Ranging Observations to Near-Earth Orbiting Spherical Satellites
【24h】

Calibration of Empirical Models of Thermospheric Density Using Satellite Laser Ranging Observations to Near-Earth Orbiting Spherical Satellites

机译:卫星激光测距观察到近地轨道球形卫星校准热散液密度的经验模型

获取原文

摘要

The thermosphere causes by far the largest non-gravitational perturbing acceleration of near-Earth orbiting satellites. Especially between 80 km and 1,000 km, the thermospheric density distribution and variations are required to model accurately this acceleration for precise orbit determination (POD), ephemeris computation and re-entry prediction of the Low-Earth Orbiting (LEO) satellites. So far, mostly on-board accelerometers are used to measure the thermospheric density. However, such type of satellite is usually of complex shape and any error or mismodelling in the satellite drag coefficient and satellite effective cross-sectional area will directly propagate into the derived thermospheric density values. At GFZ, an empirical model of the thermospheric mass density denoted as "CH-Therm-2018" has been developed by using 9 years (2001-2009) of CHAMP observations. A completely different approach for thermospheric density determination is based on using satellite laser ranging (SLR) measurements to LEO satellites equipped with retro-reflectors to determine an accurate satellite orbit. These measurements are sensitive to small perturbations acting on the satellite. In order to minimize the error induced by imprecise satellite macro-models, we use in our investigation SLR observations to satellites with a simple spherical shape and thus, relate estimated scaling factors to the thermospheric density. In this paper, we use SLR observations to two ANDE-2 satellites - ANDE-Castor and ANDE-Pollux - as well as SpinSat with altitudes between 248 km and 425 km to calibrate the CH-Therm-2018 model, as well as four other empirical models of thermospheric density, namely CIRA86, NRLMSISE00, JB2008 and DTM2013. For our tests, we chose a period from 16 August 2009 to 26 March 2010 of low solar activity and a period from 29 December 2014 to 29 March 2015 of high solar activity. Using data of a few geodetic satellites obtained at the same and different time intervals allows us to in
机译:迄今为止热层的原因是近地绕轨道卫星的最大非重力扰动加速度。特别是在80km到1000公里之间,可以准确地模拟热散孔密度分布和变化,以便精确地轨道确定(POD),星际历程计算和低地轨道(LEO)卫星的重新进入预测。到目前为止,主要用于测量热磁性密度的板上加速度计。然而,这种类型的卫星通常具有复杂的形状,并且卫星拖曳系数和卫星有效的横截面积中的任何误差或毫不掩盖将直接传播到衍生的热磁性密度值中。在GFZ,通过使用9年(2001-2009)的冠军观测,通过使用9年(2001-2009)开发了所示为“CH-THERM-2018”的热散形质量密度的经验模型。一种完全不同的热磁性密度测定方法是基于使用卫星激光测距(SLR)测量到配备有复古反射器的Leo卫星,以确定精确的卫星轨道。这些测量对在卫星上作用的小扰动敏感。为了最大限度地减少由不精发卫星宏观模型引起的误差,我们在我们的调查中使用具有简单球形的卫星的观察,因此将估计的缩放因子与热散密度相关。在本文中,我们使用单反观察到两个Ande-2卫星 - Ande-Castor和Ande-Pollux - 以及高度在248公里到425公里的Spinsat,以校准CH-Therm-2018型号,以及其他四个热散液密度的经验模型,即CiRA86,NRLMSISE00,JB2008和DTM2013。对于我们的测试,我们选择了从2009年8月16日至2010年3月26日的太阳能活动和2015年12月29日至2015年12月29日的高太阳能活动的期间。使用以相同和不同的时间间隔获得的一些大地测量卫星的数据允许我们进入

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号