首页> 美国政府科技报告 >Low-speed stability and control wind-tunnel investigations of effects of spanwise blowing on fighter flight characteristics at high angles of attack
【24h】

Low-speed stability and control wind-tunnel investigations of effects of spanwise blowing on fighter flight characteristics at high angles of attack

机译:低速稳定性和控制风洞研究横向吹气对大迎角战斗机飞行特性的影响

获取原文

摘要

The effects of spanwise blowing on two configurations representative of current fighter airplanes were investigated. The two configurations differed only in wing planform, with one incorporating a trapezoidal wing and the other a 60 delta wing. Emphasis was on determining the lateral-directional characteristics, particularly in the stall/departure angle-of-attack range; however, the effects of spanwise blowing on the longitudinal aerodynamics were also determined. The-tunnel tests included measurement of static force and forced-oscillation aerodynamic data, visualization of the airflow changes created by the spanwise blowing, and free-flight model tests. The effects of blowing rate, chordwise location of the blowing ports, asymmetric blowing, and blowing on the conventional aerodynamic control characteristics were investigated. In the angle-of-attack regions in which the spanwise blowing substantially improved the wing upper-surface flow field (i.e., provided reattachment of the flow aft of the leading-edge vortex), improvements in both static and dynamic lateral-directional stability were observed. Blowing effects on stability could be proverse or adverse depending on blowing rate, blowing port loaction, and wing planform. Free-flight model tests of the trapezoidal wing confirmed the beneficial effects of spanwise blowing measured in the static and dynamic force tests.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号