首页> 美国政府科技报告 >In situ analysis of CO during chemisorption and oxidation on graphite: Supported Pt by FTIR-microspectrometry
【24h】

In situ analysis of CO during chemisorption and oxidation on graphite: Supported Pt by FTIR-microspectrometry

机译:石墨化学和氧化过程中CO的原位分析:FTIR-显微光谱法测定负载pt

获取原文

摘要

For chemisorption and oxidation on Pt/HOPG (highly-orientated pyrolytic) graphite, reflectance Fourier Transform Infrared (FTIR)-microspectrometry reveals a variable state and reactivity for CO. Even for model surface science systems, where surface heterogeneity is minimal, surface diffusion may be too slow relative to the reaction rate to avoid segregation of reactants into surface islands under steady-state conditions. Thus in CO oxidation on Pt (where the relevant surface diffusion coefficients are such that D sub O less than D sub CO) then reactant CO islands exists at the perimeters of which the surface reaction is thought to occur. Furthermore CO can chemisorb on metals in linear and bridge forms to extents which vary with precise faces predominantly exposed coverage, etc. Infrared has long been used to probe the nature of adsorbed CO on model film and heterogeneous surfaces, but it may now be that FTIR-microspectrometry will allow the state of this adsorbate and reactant to be investigated with a spatial resolution of 4.4 microns on model (and real) catalytic surfaces.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号