首页> 美国政府科技报告 >Aerospace devices for magnetic replicas
【24h】

Aerospace devices for magnetic replicas

机译:用于磁复制品的航空航天设备

获取原文

摘要

Retained persistent magnetic field has been studied and improved in the superconductor YBa2Cu3O7 (Y123). During the study, trapped magnetic field, B(t), has been increased by over a factor of 10(exp 5). Methods used to improve magnetic field trapping were principally: (1) the adoption of the Melt Texturing process to increase grain size; (2) the addition of excess Y to disperse deposits of Y2BaCuO5 (Y211) and again increase grain size; (3) irradiation with high energy particles including 1H, 3He, 4He, and fission fragments; and (4) utilizing temperatures below 77 K has also been quantified as a way to increase trapped field. In addition, in our study of B(t), we have found laws governing creep, activation, temperature dependence, creep vs. current flow, etc. In the range 20 K less than or equal to T less than or equal to 65 K, and for B less than 10 Tesla, a simple empirical relationship was found: B(trap) (T2) = B(trap) (T1) ((Tc - T2)/(Tc - T1))squared where Tc is the critical temperature. The highest experimental trapped field was B(trap) = 3.96 Tesla, at 65 K. We believe this to be the highest persistent field ever produced, by any method. A two component model of the persistent currents has been developed. This accurately reproduces the data, using as parameters only the magnitude of a constant surface current, J(s), and a constant volume current J(v). The model successfully predicts B(t) (xyz) for the case of maximum trapped field, for all samples observed. It has also been extended to describe the unsaturated case either zero field cooled, or field cooled. Loss of strap with time has been studied for the critical state (Bt,max), and non critical state (Bt less than Bt,max), for times from a few minutes to a few months, for unirradiated material, for irradiation by 1H, 3He, 4He, high z projectiles, and neutrons, and for all materials used in the overall study. We conclude that: (1) multi Tesla trapped fields are attained; (2) fields over 10 T are achievable; (3) creep is not a large problem; (4) application is feasible to motors, generators, magnets for particle beam optics, separators, levitating bearings, energy storage, shielding, and transportation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号