首页> 美国政府科技报告 >CFD Analysis of Modular Thrusters Performance
【24h】

CFD Analysis of Modular Thrusters Performance

机译:模块化推进器性能的CFD分析

获取原文

摘要

The effective performance of modular thrusters in an aerospike configuration is difficult to determine. Standard analytical tools are applicable to conventional nozzle shapes, but are limited when applied to an aerospike nozzle (An aerospike nozzle is an altitude compensating external nozzle). Three baseline nozzle shapes are derived using standard analytical procedures. The baseline nozzle sizes are restricted to fill a volume envelope. The three shapes are an axi-symmetric round nozzle, a two dimensional planar square exit nozzle, and a super elliptic round to nearly square nozzle. The integrated (thruster/aerospike) performance of the three nozzles is determined through the use of three dimensional viscous computational fluid dynamic (CFD) calculation where complex features of the flow field can be accurately captured. The resulting installed performance is then used to evaluate the efficiency of these nozzle shapes for aerospike applications. The determination of effective performance of a thruster nozzle integrated into an aerospike nozzle require the solution of the three dimensional turbulent Navier-Stokes equations. The model used in this study consisted of two zones; one of the upstream thruster cowl surface so freestream conditions can be accurately predicted, and two, the aerospike surface beginning with the thruster outflow and extending to the end of the aerospike surface. The numerical grid consisted of over 120,000 nodes and used symmetry on the thruster centerline and edge. A two species non-reacting chemistry model was used to capture the variation of fluid properties between the hot plume base and freestream air. From the results of the three baseline nozzle aerospike calculations, the effictive performance of the nozzle was determined. The flow fields of these calculations do show some variation between the cases. Recirculation zones on the cowl surface is predicted for the two dimensional planar nozzle and a smaller one for the super elliptic nozzle. The recirculation is caused by the strong pressure gradient between the plume and freestream flows. The axi-symmetric nozzle results indicate recirculation zones on the thruster face. These recirculation zones smooth the pressure gradient between the plume and freestream flow limiting the formation of recirculation on the cowl surface. Thruster to thruster interaction is evident for the axi-symmetric and supper elliptic calculation while the two dimensional planar nozzle did not have any lateral expansion in the nozzle, so thruster to thruster interaction is limited. The integrated performance results, at the altitude choosen, show very little variation between the three thruster shapes. This result allows for nozzle shape determination based on additional considerations (thermal, structural, weight) besides performance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号