首页> 美国政府科技报告 >Die Attachment for -120 C to 20 C Thermal Cycling of Microelectronics for Future Mars Rovers: An Overview
【24h】

Die Attachment for -120 C to 20 C Thermal Cycling of Microelectronics for Future Mars Rovers: An Overview

机译:用于-120 C至20 C微电子热循环的芯片附件用于未来的火星车:概述

获取原文

摘要

Active thermal control for electronics on Mars Rovers imposes a serious penalty in weight, volume, power consumption, and reliability. Thus, we propose that thermal control be eliminated for future Rovers. From a functional standpoint there is no reason that the electronics could not operate over the entire temperature range of the Martian environment, which can vary from a low of approximately equal -90 C to a high of approximately equal 20 C during the Martian night and day. The upper end of this range is well within that for conventional electronics. Although the lower end is considerably below that for which conventional--even high-reliability electronics is designed or tested, it is well established that electronic devices can operate to such low temperatures. The primary concern is reliability of the overall electronic system, especially in regard to the numerous daily temperature cycles that it would experience over the duration of a mission on Mars. Accordingly, key reliability issues have been identified for elimination of thermal control on future Mars Rovers. One of these is attachment of semiconductor die onto substrates and into packages. Die attachment is critical since it forms a mechanical, thermal and electrical interface between the electronic device and the substrate or package. This paper summarizes our initial investigation of existing information related to this issue, in order to form an opinion whether die attachment techniques exist, or could be developed with reasonable effort, to withstand the Mars thermal environment for a mission duration of approximately I year. Our conclusion, from a review of literature and personal contacts. is that die attachment can be made sufficiently reliable to satisfy the requirements of future Mars Rovers. Moreover, it appears that there are several possible techniques from which to choose and that the requirements could be met by judicious selection from existing methods using hard solders, soft solders, or organic adhesives. Thus from the standpoint of die attachment. it appears feasible to eliminate thermal control for Rover electronics. We recommend that this be further investigated and verified for the specific hardware and thermal conditions appropriate to Mars Rovers.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号