首页> 美国政府科技报告 >Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications
【24h】

Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

机译:用于高效光电应用的新型嵌段共聚物的设计与合成

获取原文

摘要

It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号