首页> 美国政府科技报告 >Temperature and strain-rate effects on deformation mechanisms in irradiated stainless steel
【24h】

Temperature and strain-rate effects on deformation mechanisms in irradiated stainless steel

机译:温度和应变率对辐照不锈钢变形机制的影响

获取原文

摘要

Analysis of the deformation microstructures in ion-irradiated stainless steel shows twinning to be the predominant deformation mode at room temperature. Dislocation channelling also occurs under slow strain rate conditions. Stresses required for twinning were calculated by the model of Venables and are compatible with observed yield stresses in neutron-irradiated material if loops are the principal twin source. Computation of the expected radiation hardening from the defect structure, based on a simple model, is consistent with yield strengths measured on neutron-irradiated steels. Lower yield stresses and greater thermal energy at 288 C lessen the probability of twinning and dislocation channeling becomes the primary deformation mode at the higher temperature. However, preliminary early results show that some twinning does occur in the irradiated stainless steel even at the higher temperature when higher strain rates are used.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号