首页> 美国政府科技报告 >Experimental observations of the breakup of multiple metal jets in a volatile liquid
【24h】

Experimental observations of the breakup of multiple metal jets in a volatile liquid

机译:对挥发性液体中多种金属射流破碎的实验观察

获取原文

摘要

A postulated severe loss of coolant accident in a nuclear reactor can lead to significant core damage due to residual heat generation. Subsequently, melted core materials (i.e.; corium) could migrate downward and impinge upon the lower head of the reactor pressure vessel (RPV). During this relocation, the complexity of the reactor structure could segregate the molten corium into various flow paths. A perforated flow plate could readily provide the mechanism to segregate the molten corium. The resulting small (a few cm) diameter melt streams, driven by gravity, could then penetrate the remaining coolant in the RPV and cause any of the following events: impingement of the high temperature melt streams on the lower head could breach the RPV; re-agglomeration of the corium melt on the lower head could influence the coolability of the debris bed; (open quotes)pre-mixing(close quotes) of the melt streams with the coolant could lead to a vapor explosion; or, sufficient quenching of the melt streams by the coolant could produce a stabilized debris bed. An overview of the thermo-science issues related to core-melt accidents is presented by Theofanous. Thus, insight into the melt stream breakup mechanisms (i.e.; interfacial conditions, fragmentation, and geometric spacing) during the melt-coolant interactions is necessary to evaluate the plausibility, and characteristics, of these events. Molten Fuel Stream Breakup Simulation (MFSBS) experiments have been performed at Argonne National Laboratory in which simulant materials were used to determine a 'boiling' jet breakup length correlation and to visualize the melt fragmentation mechanisms during the penetration of a single molten metal jet into a volatile liquid. The goal was to characterize the hydrodynamics of the corium-water interactions in a postulated core melt accident. The present experiment closely follows the procedures of the MFSBS.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号